

REMEDIATION IMPLEMENTATION AND POST-REMEDIATION MONITORING REPORT

OCTOBER 2013 THROUGH MAY 2014

ROBERT BOSCH TOOL CORPORATION LEITCHFIELD DIVISION BUILDING #1 410 EMBRY DRIVE LEITCHFIELD, KENTUCKY

AGENCY INTEREST # 1579

Submitted to:

Kentucky Department for Environmental Protection

Division of Waste Management Superfund Branch

Prepared by:

AMEC Environment & Infrastructure, Inc 2456 Fortune Drive, Suite 100 Lexington, Kentucky 40509

AMEC Project 6251-12-1002

November 7, 2014

November 7, 2014

Mr. Christopher Jung, P.G. Superfund Branch Division of Waste Management 200 Fair Oaks Lane Frankfort, Kentucky 40601

Subject:

Remediation Implementation and Post-Remediation Monitoring

Report - October 2013 through May 2014

Robert Bosch Tool Corporation Leitchfield Division Building #1

410 Embry Drive, Leitchfield, Grayson County, Kentucky

Agency Interest # 1579 AMEC Project 6251-12-1002

Dear Mr. Jung:

On behalf of Robert Bosch Tool Corporation (RBTC), AMEC Environment and Infrastructure, Inc. (AMEC) is pleased to submit this *Remediation Implementation and Post-Remediation Monitoring Report* for the subject property. This report has been prepared as discussed in AMEC's report titled *Additional Investigation and Remediation Activities, April 2013 through August 2013 Robert Bosch Tool Corporation, Leitchfield Division Building #1, 410 Embry Drive, Leitchfield, Grayson County, Kentucky, dated November 12, 2013.*

Should you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

AMEC Environment & Infrastructure, Inc.

Alison L. Dunn, P.G.

Project Manager 859-566-3729

alison.dunn@amec.com

Sarah M. Donaldson, P.G.

Senior Geologist 859-566-3730

sarah.donaldson@amec.com

cc: John Young, Robert Bosch, LLC

Afiegbe Aromake, Robert Bosch Tool Corporation

Paul Johnstone, AMEC

TABLE OF CONTENTS

			Page						
1.0	INTR	ODUCTION	1-1						
2.0	FIELD	ACTIVITIES							
	2.1								
	2.2	REMEDIAL INJECTION ACTIVITIES SUMMARY	2-1						
	2.3	HEALTH AND SAFETY MONITORING							
	2.4	BIOSTIMULATION - 3DME AND SODIUM BICARBONATE	2-3						
		2.4.1 MW-8 Pilot Test for pH							
		2.4.2 New Injection Wells							
		2.4.3 Existing Injection Wells							
	2.5	SOURCE AREA - TRAP AND TREAT BOS 100	2-6						
		2.5.1 BOS 100 Injections							
		2.5.2 Monitoring During BOS 100 Injections	2-8						
	2.6	AEROBIC BIOREMEDIATION - ORC FILTER SOCK PILOT TEST							
	2.7	ANAEROBIC BIOAUGMENTATION - DHC INSTALLATION							
	2.8	TW-18 AND TW-19 INSTALLATION							
	2.9	WELL SURVEY							
	2.10	INVESTIGATION-DERIVED WASTE							
3.0	POST	T-INJECTION MONITORING							
0.0	3.1	GENERAL POST-INJECTION GROUNDWATER CONDITIONS							
		3.1.1 Well Redevelopment							
		3.1.2 Water Level Gauging	3-2						
	3.2	FIELD PARAMETER COLLECTION EVENTS	3-3						
	3.3	GROUNDWATER SAMPLING							
		3.3.1 February 7, 2014 Sampling Event							
		3.3.2 PDB Placement	3-3						
		3.3.3 90-Day Post Injection Sampling Event	3-3						
4.0	REM	EDIATION IMPLEMENTATION RESULTS	4-1						
	4.1								
	4.2	SOURCE AREA (BOS 100) RESULTS	4-2						
		4.2.1 Field Parameter Monitoring	4-2						
		4.2.2 Groundwater Analytical Results	4-3						
	4.3	SECONDARY SOURCE AREA (BIOSTIMULATION) RESULTS	4-5						
		4.3.1 Field Parameter Monitoring	4-5						
		4.3.2 Groundwater Analytical Results	4-5						
	4.4	PLUME AREA (BIOSTIMULATION) RESULTS	4-6						
		4.4.1 Field Parameter Monitoring	4-7						
		4.4.2 Groundwater Analytical Results	4-7						
	4.5	AEROBIC BIOREMEDIATION - ORC PILOT TEST RESULTS	4-7						
	4.6	ANAEROBIC BIOAUGMENTATION - DHC PILOT TEST RESULTS	4-8						
5.0		CLUSIONS	5-1						
6.0	QUA	LIFICATIONS OF REPORT	6-1						

TABLES

TABLE 1	Well Construction Summary - Permanent Monitoring Wells and Former
TABLES	Water Supply Wells
TABLE 2	Well Construction Summary –Remediation Test Wells
TABLE 3	Water Level Data Summary
TABLE 4	Groundwater Field Parameter Data
TABLE 5	Remediation Injection Quantities – 3DMe
TABLE 6	3DMe Injection Summary
TABLE 7	Remediation Injection Quantities – BOS 100
TABLE 8	BOS 100 Injection Summary
TABLE 9	Trend Analyses for TCE, Cis-DCE and VC, 2012-2014

FIGURES

FIGURE 1	Topographic Map
FIGURE 2	Aerial Photograph
FIGURE 3	Monitoring Well Locations
FIGURE 4	3DME and Sodium Bicarbonate Injection Locations
FIGURE 5	Remediation Injection Zones – BOS 100 and Sentinel Wells
	5A BOS 100 Injection Locations - Zones 1B
	5B BOS 100 Injection Locations - Zone 2
	5C BOS 100 Injection Locations - Zone 6
	5D BOS 100 Injection Locations - Zone 7
FIGURE 6	Groundwater Elevation Contour Map – December 3, 2014
FIGURE 7	Groundwater Elevation Contour Map – May 19, 2014
FIGURE 8	Total CVOC Concentrations in Groundwater – June, 2013
FIGURE 9	90-day Post-Remediation Total CVOC Concentrations in Shallow Groundwater – May, 2014
FIGURE 10 FIGURE 11	TCE Concentrations in Shallow Groundwater – June, 2013 90-day Post-Remediation TCE Concentrations in Shallow Groundwater – May, 2014

APPENDICES

APPENDIX A	Laboratory Analytical Report – Groundwater Samples October 2013
APPENDIX B	Photo Log
APPENDIX C	Soil Boring and Well Logs
APPENDIX D	Laboratory Analytical Reports – Groundwater Samples January 2014 and May 2014
APPENDIX E	Waste Disposal Documentation
APPENDIX F	Hydrographs
APPENDIX G	Historical Groundwater Results Summary Tables and Trend Graphs

1.0 INTRODUCTION

This Remediation Implementation and Post-Remediation Monitoring Report has been prepared by AMEC Environment & Infrastructure, Inc. (AMEC) at the request of Robert Bosch Tool Corporation (RBTC) for the RBTC Leitchfield Division Building #1 facility (LDB #1) in Leitchfield, Kentucky (**Figure 1**). Investigation activities have been conducted at the site since late 2003; remedial activities have been conducted concurrently with additional investigations since 2010. Investigation and remedial activities have focused on chlorinated volatile organic compounds (CVOCs) in groundwater.

The subject property consists of a tract of land approximately seven acres in size, developed with an 86,000 square foot former manufacturing facility and associated outbuildings. The property is located north of downtown Leitchfield at 410 Embry Drive, approximately 800 feet west-southwest of the intersection of Embry Drive and Salt River Road in Leitchfield, Grayson County, Kentucky. RBTC sold the property to Lots LLC, owned by Mr. Marty Higdon, in late 2010. The property is currently used primarily for warehousing, and a small retail electronics store is located in the front of the building on the northeast corner. The site location is shown on the topographic map in Figure 1. The site vicinity is shown on the aerial photograph in Figure 2.

AMEC submitted a report on November 12, 2013 that summarized activities conducted during the first part of 2013 (April through August). The report was titled *Additional Investigation and Remediation Activities, April 2013 through August 2013, Robert Bosch Tool Corporation, Leitchfield Division Building #1, Leitchfield, Grayson County, Kentucky.* It included the results of monitoring well installation activities (June 2013, MW-29 through MW-31), groundwater monitoring conducted in June 2013, and remediation activities (pit and impacted soil removal) conducted in the former wastewater treatment room (WWTR). The report included recommendations for additional sampling and remediation activities to be conducted for the remainder of 2013.

The following report summarizes planning and field activities conducted between October 2013 and May 2014, which included the following tasks:

- Limited interim groundwater sampling of selected wells in October 2013 and January 2014.
- Submittal of an Underground Injection Control (UIC) permit request (Request for Rule Authorization for Injection of BOS 100® and 3-D Microemulsion) in November 2013 to the United States Environmental Protection Agency (USEPA), Region 4, Ground Water/UIC Section, for approval to install Geoprobe® direct-push borings and long term reinjection wells as Class V injection wells. The UIC request was approved by the USEPA in December 2013.
- Pre-injection water level survey (December 3, 2013).

- On December 10, 2013 and January 7, 2014, installation of four shallow zone remediation test wells (TW-16, TW-17, TW-18, TW-19), two wells associated with a sodium bicarbonate pilot test conducted near MW-8 (TW-16 and TW-17) and two wells (TW-18 and TW-19) associated with areas to be monitored south of the former WWTR.
- Pilot testing of remedial amendments including:
 - On December 10, 2013, use of sodium bicarbonate near MW-8 to test the added effectiveness of maintaining anaerobic dechlorinating conditions within the optimal pH range,
 - On January 24, 2014, use of Regenesis Oxygen Releasing Compound® (ORC) in a filter sock near MW-14 to test for effectiveness of increasing the dissolved oxygen (DO) of the formation to increase aerobic degradation of vinyl chloride, and,
 - On February 3, 2014, use of Dehalococcoides bacteria (DHC) near MW-13 to test the effectiveness of increasing the bacterial population (bioaugmentation) for treatment in the plume area.
- Injections of Trap and Treat BOS 100® (BOS 100) in the source area and Regenesis 3D Microemulsion[™] – Factory Emulsified (3DMe) in the plume area through new and existing injection points.
- Post injection monitoring conducted from February 2014 through May 2014, which included field parameter monitoring and one comprehensive round of groundwater monitoring in May 2014.

Section 2.0 describes the field activities performed from October 2013 through February 2014. Section 3.0 discusses post-remediation groundwater monitoring activities. Section 4.0 presents remediation implementation and groundwater monitoring results. Section 5.0 presents conclusions and recommendations. Section 6.0 provides qualifications to the content of this report.

2.0 FIELD ACTIVITIES

Monitoring well locations are shown on **Figure 3**. A well construction summary table for permanent monitoring wells and former water supply wells is included as **Table 1**. A well construction summary table for remediation test wells and sentinel wells is included as **Table 2**. The following sections describe the field activities performed by AMEC from October 2013 through May 2014.

2.1 OCTOBER 2013 LIMITED GROUNDWATER SAMPLING

Prior to completion of the previous report (*Additional Investigation and Remediation Activities, April 2013 through August 2013*, dated November 2013) and while preparing recommendations regarding additional injections, AMEC performed limited groundwater sampling of selected wells in key areas to determine locations for additional injections of 3DMe. On October 7, 2013, AMEC personnel performed low-flow sampling of seven monitoring wells and two sentinel wells (MW-5, MW-8, MW-13, MW-17, MW-21, MW-22, MW-23, SW-3 and SW-4). Groundwater levels were gauged in these wells prior to well purging. Low-flow sampling methods were used to the extent practical for well purging and sample collection. Sentinel well SW-3 purged dry very quickly and did not recover for sample collection. During well purging, field parameter readings were collected from each well, including temperature, pH, specific conductance (SC), oxygen reduction potential (ORP), DO, and turbidity.

All samples were maintained chilled in a cooler on ice, and shipped for analysis to ESC Lab Sciences (ESC) in Mt. Juliet, Tennessee. All groundwater samples were analyzed for volatile organic compounds (VOCs) by USEPA Method 8260B and Total Organic Carbon (TOC) by USEPA Method 9060A. Water level measurements are summarized on **Table 3** and field parameter readings are included on **Table 4** (final reading only). The laboratory report is provided in **Appendix A**.

2.2 REMEDIAL INJECTION ACTIVITIES SUMMARY

From December 3, 2013 through February 7, 2014, AMEC and its subcontractor AST Environmental, Inc. (AST) implemented a second round of injections to continue implementation of the two selected primary remedial technologies. The two primary technologies selected for remediation of the shallow groundwater zone are:

- Adsorption of the chlorinated organic compounds followed by iron-catalyzed abiotic reductive dechlorination, using BOS 100 in the Source Area; and,
- Biostimulation of naturally-occurring bacteria by injection of 3DMe in the secondary source areas and the surrounding less concentrated plume areas, to promote biologically-facilitated breakdown of the CVOCs by reductive dechlorination.

Prior to remedial activities, water level gauging was performed in all onsite and nearby wells on December 3, 2013, using an electronic water level indicator (WLI) to measure the depth to water from the top of the well casing in each well. The WLI was decontaminated with a solution of Alconox® and store-bought distilled water, and rinsed thoroughly with distilled water between each well.

As part of the second round of injections, some variations on the primary technologies were implemented, as described in more detail below. The following major activities were performed:

- Installation of two remediation test wells, TW-16 and TW-17, between MW-8M and permanent biostimulation injection point F12P, and implementation of a pilot test at MW-8 using 3DMe and sodium bicarbonate in injection point F12P.
- Installation of eight new permanent biostimulation injection points, and injection of 318 gallons of concentrated 3DMe and approximately 15 pounds of sodium bicarbonate in those points.
- Injection of 105 gallons of 3DMe and 270 pounds of sodium bicarbonate in 42 existing permanent injection wells.
- Injection of 4,820 pounds of BOS 100 into 72 new direct push technology (DPT) borings.
- Installation of a new monitoring well, MW-32, directly south of MW-14, and placement of a filter sock containing ORC in MW-32.
- Introduction of DHC bacteria in permanent biostimulation injection points G2P and G4P, for bioaugmentation.
- Installation of two remediation test wells south of the WWTR, TW-18 and TW-19, in order to fill holes in the groundwater monitoring well network.
- Survey of new wells and field parameter/groundwater monitoring throughout the process.

Photographs from the injection activities are provided in **Appendix B**. The following sections describe major activities associated with the additional injections.

2.3 HEALTH AND SAFETY MONITORING

An updated project-specific Health and Safety Plan (HASP) was prepared for the project to address specific job hazards and work procedures required during remediation implementation and groundwater monitoring activities. The HASP included chemical and material handling, remediation drilling techniques, amendment injection procedures, and spill response and emergency procedures. The HASP was developed in accordance with Occupational Safety and Health Administration (OSHA) requirements (29 CFR 1910.120)

and was reviewed and signed by all individuals (AMEC personnel and other) present at the site for the purpose of remediation and monitoring activities.

Level D personnel protective equipment (hard hat, safety glasses, gloves, steel toed boots, etc.) was used at all the times by AMEC and AST personnel. Tyvek® suits were used by AST personnel during handling of BOS 100 and 3DMe products. In addition, a MultiRae 10.6eV multigas detection meter was used to monitor levels of oxygen (O₂), carbon monoxide (CO), VOCs and presence of combustible gases relative to the lower explosive limit (LEL) during remedial activities. The meter was calibrated daily prior to commencement of work. A fresh air calibration was performed on the meter initially and then it was calibrated with 100 parts per million (ppm) isobutylene for VOCs using single sensor calibration. The meter was then calibrated for CO/H₂S/LEL/O₂ with mixed calibration gas containing: 10 ppm CO, 50 ppm H₂S, 2.5 percent (%) Methane (50% LEL), 18% O₂ and Nitrogen (balance).

During remedial activities, H₂S and combustible gases (LEL) were not detected on the multigas detection meter. CO was detected during the injections and was in the range of 1 to 48 ppm. The elevated CO readings were observed while using the forklift to move equipment and pallets of materials during remedial activities. Field personnel were evacuated from the area when elevated CO readings were detected. VOCs were generally not detected, except for low levels of VOCs on a few occasions, in the range of 0.1 to 0.9 ppm, interpreted to be caused by the spray paint used to mark injection locations. Elevated VOC readings were detected on January 8, 2014, between 1.1 and 3.5 ppm, while injecting BOS 100 in injection Zone 2. A Draeger pump was used with a vinyl chloride detection tube and with 5 strokes the detection tube measured between 0.5 and 1.0 ppm. The area was immediately evacuated and monitored with the multigas meter. Supplementary ventilation was provided with industrial fans when additional injection work was performed in the room at later dates.

2.4 BIOSTIMULATION - 3DME AND SODIUM BICARBONATE

The main 3DMe injections were conducted in two phases from December 11 through December 13, 2013, and from January 21 through February 7, 2014. A total of 3,200 pounds (lbs), or approximately 384 gallons, of 3DMe concentrate was delivered to the site on December 4, 2014 in eight 55-gallon polyvinyl chloride (PVC) drums, each drum containing 400 lbs (approximately 48 gallons) of concentrate. A total of 400 pounds (48 gallons) of 3DMe concentrate was delivered to the site on January 31, 2014 in one 55-gallon PVC drum. Sodium bicarbonate was purchased from a pool supply company in Elizabethtown, Kentucky.

3DMe was delivered onsite as an amber colored semi-viscous liquid concentrate. 3DMe was diluted in the field by adding water to form an easy to handle and pumpable microemulsion with a relatively high hydrophilic/lipophilic balance (HLB.) This high HLB allows dilute 3DMe suspensions to be well-distributed within contaminant plumes. After

field emulsification, the material becomes a less viscous, watery, cream-colored microemulsion.

During field emulsification, a specific pre-calculated volume of the 3DMe concentrate was added to the water in a recirculating mixer tank to prepare the injectate. Sodium bicarbonate was also added in a pre-calculated volume to the mix tank. A high-pressure liquid ring pump was used to pump the 3DMe injectate through an injection head attached to a direct push drilling rod. The following sections describe both types of injections, those completed in newly drilled and installed injection wells, and those completed into existing onsite wells installed in late 2012 as part of the first round of remedial injections.

2.4.1 MW-8 Pilot Test for pH

In order to test the added effectiveness of maintaining anaerobic dechlorinating conditions within the optimal pH range, AMEC performed a pilot test in the vicinity of MW-8. The purpose was to test the effectiveness of introducing additional biostimulation amendments supplemented with a pH adjustor (sodium bicarbonate). On December 10, 2013, AMEC began the pilot test by installing two remediation test wells at the locations shown on Figure 3 between MW-8M and permanent biostimulation injection point F12P. These wells, referred to as TW-16 and TW-17, were installed using DPT drilling methods to probe refusal. The two new remediation test wells were constructed of 3/4-inch diameter, Schedule 40 PVC, flush-threaded well casing and manufactured well screen with 0.010inch machined slots. The wells were constructed with ten feet of screen. A washed sand filter pack was placed around each well screen from the bottom of the boring to approximately two feet above the top of the well screen. A minimum two-foot thick bentonite seal (consisting of hydrated bentonite chips) was placed above the washed sand filter pack, and concrete was placed at the top, above the bentonite seal. The wells were finished with 4-inch diameter bolting manhole covers set in concrete pads flush with the ground surface. Well logs are included in Appendix C.

After installation, approximately 201 gallons of a mixture of 3DMe and sodium bicarbonate was placed in permanent injection well F12P (one gallon 3DMe concentrate, seven pounds sodium bicarbonate and 200 gallons of water). The location of F12P (row F, permanent injection well 12P) is depicted on **Figure 4**. Temperature, pH and SC readings were collected from TW-16, TW-17 and MW-8 prior to and right after injection of the 3DMe/sodium bicarbonate mixture. Prior to injection, the pH ranged from 6.44 standard units (s.u.) in TW-17 to 6.73 s.u. in TW-16. SC readings ranged from 0.47 milliSiemens per centimeter (mS/cm) in TW-16 to 1.03 mS/cm in MW-8. Post injection (same day), the pH increased most significantly in TW-17, the closest well to F12P, from 6.44 s.u. to 7.56 s.u. In addition, SC increased most significantly in TW-17 from 0.75 mS/cm to 2.51 mS/cm and 3DMe was visible in the well. By two days after the injection, the pH levels had returned to pre-injection levels in all three monitoring wells, though temperature and SC were still elevated compared to baseline. Based on the results of the pilot test, AMEC

adjusted the amount of sodium bicarbonate originally planned for injection. In most cases, the quantity was doubled above the original planned injection quantity.

2.4.2 New Injection Wells

On December 12 and 13, 2013, a total of eight new soil borings and permanent injection wells were advanced and installed via DPT using a track mounted Geoprobe® 7720DT rig (exterior locations) and a track mounted Geoprobe® 54LT rig (interior locations), equipped with 1.5-inch to 2.5-inch drill rods, to perform 3DMe injections. The new injection points were installed on row F (F35P, F36P, F37P and F38P), row D (D30P, D31P and D32P) and row C (C23P). Locations of the newly installed points are shown on **Figure 4**. A detailed summary of the injection dates and volumes for each 3DMe boring is included as **Table 5** and a summary by row is included as **Table 6**. A total of 318 gallons of 3DMe concentrate and 15 pounds of sodium bicarbonate were installed in the eight new permanent injection wells.

The manner of drilling and injection was similar to the methods used during previous site injections. As the DPT borings were advanced, injections were performed to enhance the formation permeability by propagating fractures through application of injectate under pressure. The solution was injected using a positive displacement pump. Fluid discharge from the pump was connected directly to the DPT rods for injection into the matrix. The DPT rods were equipped with slotted, retractable drive points that permit injection at multiple levels during the same push. As the drill rods were advanced, injections were performed in a top-down manner at three to five depth intervals, spaced approximately two feet apart vertically, ranging from 11 to 17 feet below ground surface (bgs) or to top of weathered shale.

The permanent injection wells were installed with 3/4-inch inside diameter (ID) Schedule 40 PVC flush-threaded riser pipe with the bottom section consisting of 0.010-inch machine slotted PVC screen with an end cap. A No. 20-40 sieve silica sand pack was installed to one foot above the top of screen, followed by a No. 30-65 fine-sand seal and grout seal (consisting of 95% cement and 5% powdered bentonite), and concrete was placed at the top, above the grout seal. The well risers were terminated approximately two to four inches below the ground or floor surface. The wells were completed with a 4-inch diameter aluminum skirt and cover set in a 12-inch diameter x 4-inch deep concrete pad flush with the ground surface inside the plant building and in a 12-inch x 12-inch x 4-inch concrete pad flush with the ground surface elsewhere.

2.4.3 Existing Injection Wells

A total of 42 existing permanent injection wells (those installed as part of the previous remedial action) used for supplemental injection amendments (3DMe and sodium bicarbonate) are depicted on **Figure 4**. Wells used for amendment injections in 2014 are colored in pink. A manifold system with flow control and meters was used to deliver

product to multiple wells simultaneously. A total of 105 gallons of 3DMe concentrate and 270 pounds of sodium bicarbonate were used in batch mixes and delivered to the existing wells.

A detailed summary is included as **Table 5**. Measurements were estimated based on visual observations of the gallon markings on the totes and mixing tank while the injectate was field emulsified. Any variation in quantities between the text and summary tables is related to differences in estimating methods on a batch versus local application scale.

2.5 SOURCE AREA - TRAP AND TREAT BOS 100

A total of 23 drums, each containing about 210 lbs, or a total of 4,830 lbs of BOS 100, were shipped to the site on December 11, 2013. The drum contents consisted of BOS 100 stored in nitrogen, to keep the BOS 100 (which is reactive with oxygen) from contacting air. One drum at a time was opened and flooded with water to displace the nitrogen gas and keep the contents stable prior to and during mixing with water for injection. A specific pre-calculated amount of the wet BOS 100 was added to water in a re-circulating mixer tank, to prepare an injectable slurry. The weight of wet BOS 100 to volume of slurry or injectate was approximately 1:1 in Zones 1B, 2, and 7 (one pound of BOS 100 in one gallon of prepared slurry), while in Zone 6 the mix ratio was 1:2 (more dilute, with one pound of BOS 100 in two gallons of prepared slurry). A high pressure D35 Wanner Engineering positive displacement pump capable of 35 gallons per minute (gpm) at 1,200 pounds per square inch gauge (psig) was used to pump the BOS 100 injectate through an injection head attached to a direct-push drilling rod, and the granules of BOS 100 were sheared in the injection head to a smaller size as they were emplaced by pressure into the formation.

2.5.1 BOS 100 Injections

BOS 100 injections were conducted in three phases: from December 16 through December 20, 2013, from January 6 through January 10, 2014, and from January 13 through January 16, 2014. The 2013-2014 BOS 100 injections were performed in four zones, referred as Zones 1B, 2, 6, and 7, following the zone convention established in the 2012 injections and shown in **Figure 5**.

A total of 72 DPT borings were advanced using a track mounted Geoprobe® 7822DT rig, equipped with 1.5-inch to 2.5-inch-drill rods, to perform BOS 100 direct injections. A 2-inch diameter concrete coring machine was used to core the floor slab at each location prior to boring advancement. BOS 100 locations were laid out on an approximate 5 foot by 5 foot offset (rectangular) grid, where possible, in the source area (mid-western section of the building). The offset rectangular grid was designed to create a series of "staggered" lines of injectate for maximum areal coverage and uniform distribution. The proposed injection locations were located by field personnel using taped measurements from existing site features. Some planned locations were offset due to physical obstructions in

some areas, such as walls, overhead or underground utilities, thickened concrete floor slabs and ramps, and heavy machines or other manmade structures.

After completion, the as-built injection locations were mapped by field personnel using taped measurements from existing site features. As-built injection locations for the BOS 100 injection points, designated as BI-1, BI-2, BI-3, etc., are shown on **Figure 5** and the injection locations in individual zones are presented in **Figures 5A** through **5D**. New injection locations are depicted in green and the "BI" designation has been removed for clarity. The injection locations shown in the figures should be considered accurate only to the degree implied by the method of measurement used.

A total of 23 drums or a total of 4,820 lbs of BOS 100 was injected into the 72 multi-level overburden and shale injection points. Based on the available groundwater elevations in the adjacent monitoring wells and experience gained during the first installed injection boreholes, the vertical distance from the top of groundwater to the top of bedrock for subsequent boreholes was estimated and the interval elevations were adjusted. The injection points were driven into the overburden, terminating at approximately 9 to 15 feet bgs, and into the top of weathered bedrock shale, at approximately 9 to 16 feet bgs. Injections were performed from the top down, to prevent creation of preferential pathways at depth, ahead of the injection tooling. Depths of injection were staggered between boreholes, alternating between depths at odd intervals (7, 9, 11, 13, 15, 17 feet bgs) and even intervals (6, 8, 10, 12, 14, 16 feet bgs), or until the depth to weathered bedrock. If the depth to weathered bedrock was encountered at a higher elevation than anticipated, then the remaining dosage for the overburden was injected at the soil-weathered shale interface. In the weathered shale, BOS 100 was injected in one to two intervals in the top 1.5 feet or to refusal depth. If refusal was encountered at a higher elevation, then the injection point was backfilled with hydrated bentonite, drilled through in the same location to required depth using a skid steer and auger attachment, and then the remaining dosage for the borehole was injected at the measured depth in the weathered shale. The process was repeated, if necessary, to reach the desired depths of injection in the weathered shale rock.

During injections, occasional day-lighting of the BOS 100 slurry at the surface occurred through cracks and joints in the concrete floor slabs. Frequent day-lighting was observed at the joint cracks along the thickened slabs while injecting at some locations in Zone 1B, and from cored holes for planned injection points. The day-lighted material was collected into 55-gallon drums using a motorized drum-vacuum, and was used to hydrate bentonite backfill upon completion of injection(s).

BOS 100 dosage in the overburden was evenly divided between two to seven depth intervals in each boring, depending on the depth to bedrock, or approximately 10 lbs at each depth interval, except in Zone 6 where 5 lbs were injected per interval. The dosage in shale was divided between one to three depth intervals in each boring, depending on the depth to refusal, or approximately 10 to 15 lbs per interval in Zone 1B, 5 to 20 lbs per

interval in Zone 2 and 20 to 80 lbs per interval in Zones 7. At each injection interval, the planned volume of BOS 100 slurry was injected, causing fracture propagation in the matrix, followed by injecting an additional 10 gallons of water to purge the granular solids from the hoses and probe to prevent plugging. Sporadically during the injections, the slurry flow velocity became too low to keep the BOS particles suspended. In these events, the particles bridged and packed in the hose and probe, requiring disassembly and manual cleaning of the hoses and probe.

Sustained injection pressures were relatively low in the overburden and ranged from 250 to 600 pounds per square inch (psi), with an average of approximately 340 psi. Sustained injection pressures in the weathered shale ranged from 250 to 800 psi, with an average of approximately 360 psi.

A detailed injection log, with the borehole depths, individual fracture pressures and BOS 100 distribution at each depth interval, is provided in **Table 7**. As seen in **Table 7**, refusal in the primary source area boreholes occurred at depths ranging from 11.5 to 17 feet bgs. In boreholes where bedrock or refusal depths were encountered at higher elevation than anticipated, the remaining BOS 100 dosage for the overburden was injected at the soil/bedrock interface and the remaining dosage for shale was injected at the refusal depth, or at an adjacent injection point, with the exception of injections in Zones 1B and 2, where the injection point was backfilled with hydrated bentonite, drilled through to required depth using a skid steer and auger attachment, and then the remaining dosage for the borehole was injected at the measured depth in the weathered shale.

Table 7 and the summary **Table 8** show that a total dosage of about 4,820 lbs of BOS 100 was recorded during the injections. However, measurements during mixing of the slurry were estimated using a hand-scoop. A total of 23 drums of BOS 100 (210 pounds each) were actually consumed, making the true dosage 4,830 lbs. BOS 100 quantities injected in each zone are summarized in **Table 7**.

After completion of injections, the boreholes were backfilled with hydrated bentonite pellets and the holes in the floor were patched with a Portland cement-concrete mixture.

2.5.2 Monitoring During BOS 100 Injections

AST collected groundwater samples intermittently during the injection process from permanent and remediation test wells (TW-6, TW-10, MW-11A, MW-11B, TW-13, TW-18 and MW-25) in the BOS 100 injection area during the injections. The samples were collected to evaluate BOS 100 remediation effectiveness at intermediate stages of injections to monitor progress. Collected samples were shipped to Remediation Products, Inc. (RPI) for analysis.

During injections, samples were collected on December 20, 2013 (TW-6, TW-10, MW-11A, MW-11B, TW-13 and MW-25), January 7, 2014 (TW-18), January 10, 2014 (MW-11A and MW-11B) and January 15, 2014 (TW-13).

During these events, purging and sample collection were performed using a peristaltic pump equipped with clean disposable tubing (polyethylene tubing with a small length of silicone tubing inserted at the pump's rotating cam). The wells were purged of three well volumes prior to sample collection. Some wells had too low a yield to purge three well volumes before being purged dry. These wells were allowed to recover for a few hours to overnight. Groundwater samples were collected into sample containers from the pump discharge tubing.

At each well, a groundwater sample was collected and transferred into 40-milliliter (mL) volatile organic analysis (VOA) vials for analysis of selected CVOC parameters. The samples were shipped to RPI for analysis. RPI, the manufacturer of BOS 100, is not a commercial laboratory. Therefore no formal laboratory report was provided, and the analyses were only used for performance monitoring during the injection.

2.6 AEROBIC BIOREMEDIATION - ORC FILTER SOCK PILOT TEST

On December 10, 2013 AMEC installed MW-32 at the location shown on Figure 3 south of MW-14. The purpose of this well was to provide a vehicle for the placement of filter "socks" containing ORC. Filter socks are permeable, fabric sleeves filled with pure ORC Advanced® material. The purpose of the pilot test was to determine the effect of the ORC on degradation of intermediate CVOCs (cis-1,2-dichloroethene [cis-1,2-DCE] and vinyl chloride [VC]) in MW-14 by increasing DO. The well was installed using DPT drilling methods to probe refusal (16 feet bgs), and was constructed of 2-inch diameter, Schedule 40 PVC, flush-threaded well casing and a ten-foot section of manufactured well screen with 0.010-inch machined slots. A washed sand filter pack was placed around the well screen from the bottom of the boring to approximately two feet above the top of the well screen. A minimum 2-foot thick bentonite seal (consisting of hydrated bentonite chips) was placed above the washed sand filter pack, and concrete was placed at the top, above the bentonite seal. The well was finished with a 4-inch diameter bolting manhole cover set in a concrete pad flush with the ground surface. Well logs are included in Appendix C.

On January 17, 2014 both MW-32 and MW-14 were sampled prior to installing the ORC fabric socks. The wells were sampled using low flow sampling techniques with a peristaltic pump. The samples collected were analyzed for VOCs, biochemical oxygen demand (BOD) and chemical oxygen demand (COD). The laboratory report is included in **Appendix D**. The DO levels in the wells on January 17, 2014 were 0.27 milligrams per liter (mg/L) in MW-14 and 0.31 mg/L in MW-32.

The ORC filter sock assembly was placed in MW-32 on January 24, 2014. A total of 10 fabric socks, each measuring 2 inches in diameter and approximately 12 inches long, were assembled onsite into one filter sock unit using banding and roping material provided by the manufacturer. The depth to water at the time of placement was 3.14 feet below the top of casing and the total depth of the well was 16 feet, therefore the entire length of filter sock material was submerged at the time of placement. The DO levels approximately 2 hours after placement of the socks were 5.7 mg/L in MW-32 and 16.5 mg/L in MW-14. By the May 2014 groundwater sampling event, however, the DO in MW-14 had dropped back to below one mg/L (0.23 mg/L).

2.7 ANAEROBIC BIOAUGMENTATION - DHC INSTALLATION

As part of an anaerobic bioaugmentation pilot test, AMEC recommended introduction of cultured DHC bacteria via the two injection wells immediately adjacent to MW-13, G2P and G4P. A Regenesis product called Bio-Dechlor Inoculum® (BDI) was used. According to Regenesis, the DHC cultures in this product are capable of completely dechlorinating trichloroethene (TCE) and its breakdown products.

On the morning of February 3, 2014, AST mobilized personnel and equipment to the site and set up for the injection effort to begin later that day. The first step was to prepare a batch of anoxic water that could be used to condition the formation for injection of the DHC. When AST arrived on site, a 425 gallon tank that was previously filled with a water and 3DME solution on January 29, 2014 was measured for DO which was recorded as 7.4 mg/L. Nitrogen gas was used to sparge the tank to the required 1.0 mg/L or less DO. Nitrogen sparging was performed for the remainder of the day and the following day. The DO content was monitored until it reached 1.0 mg/L mid-day on the second day, and sparging was continued for approximately 20 minutes to ensure the DO levels were stable.

AST primed the pneumatic diaphragm pump and connected to the wellhead for G4P. At 11:05 a.m., a 100-gallon flush of the anoxic water was injected into the well at approximately 4 gpm and 10 psi. After the well was flushed with the anoxic water, 3 liters of BDI were prepared as per the manufacturer's recommended procedure, and injected into G4P using nitrogen gas at 10 psi. Immediately following the completion of the BDI injection at 11:36 a.m., a second 100-gallon flush of the anoxic water was injected into G4P at approximately 3.5 gpm and 10 psi. Upon completion, AST disconnected from G4P and connected to the wellhead for G2P.

After setting up on G2P, AST injected a 100-gallon flush of the anoxic water at approximately 3 gpm and 10 psi into GP2. Immediately following the initial anoxic water flush, 3 liters of BDI were prepared and injected into G2P with nitrogen gas at 10 psi. This again was followed with a 100-gallon flush at approximately 2 gpm and 10 psi. Throughout the injection at G2P, the water level of MW-13 was monitored and it was

determined that the depth of water rose to 0.12 feet below top of casing (typically the static water level in MW-13 is approximately 3 feet below the top of casing).

2.8 TW-18 AND TW-19 INSTALLATION

On January 7, 2014, AMEC installed two remediation test wells at the locations shown on Figure 3 south of the former WWTR. These wells, referred to as TW-18 and TW-19, were installed using DPT drilling methods to probe refusal. The purpose of the new wells was to provide better definition of groundwater concentrations in this area of the property. Historically, this area, which is inside the former manufacturing facility, had been inaccessible for drilling due to low ceilings and use of the area as an office. Ceiling tiles have since been removed from the area and it has been vacated thus opening the area to installation of wells.

The two new remediation test wells were constructed of 3/4-inch diameter, Schedule 40 PVC, flush-threaded well casing and manufactured well screen with 0.010-inch machined slots. The wells were constructed with 10 feet of screen. A washed sand filter pack was placed around each well screen from the bottom of the boring to approximately 2 feet above the top of the well screen. A minimum 2-foot thick bentonite seal (consisting of hydrated bentonite chips) was placed above the washed sand filter pack, and concrete was placed at the top, above the bentonite seal. The wells were finished with 4-inch diameter bolting manhole covers set in concrete pads flush with the ground surface. Well logs are included in **Appendix C**.

AMEC attempted to install TW-18 at two locations within the room to the south of the WWTR. Two borings, TW-18A and TW-18B, were advanced prior to installing the well at its final location. At both TW-18A and TW-18B, recovery was poor and AMEC could not confirm that the borings were located in native materials. The final location for TW-18, which was in native materials, was north of the first two borings, and just south of the southern WWTR wall.

The wells were developed and sampled on January 17, 2014 using a peristaltic pump. TW-18 and TW-19 were sampled for VOCs using low flow sampling techniques in order to establish baseline conditions in each well. The laboratory report is included in **Appendix D**.

2.9 WELL SURVEY

On February 6, 2014, Endris Engineering mobilized to the site to survey newly installed wells (TW-16 through TW-19 and MW-32). As part of the survey, several wells within the remedial amendment areas were also checked to confirm that previous survey data were correct. Several of the wells were found to have slight differences in top of casing and ground surface elevations, compared to the original survey, likely from a combination of factors (surface work and repairs around concrete well pads and pressure in the

subsurface related to the injections). Wells with elevation changes included MW-8, MW-9, MW-11A, MW-11B, MW-12A, MW-12B, MW-13, MW-14, MW-21 and MW-23. The corrected top of casing elevations are included on **Table 3**, and water level elevations calculated from measurements collected after February 6, 2014 are based upon the corrected casing elevations.

2.10 INVESTIGATION-DERIVED WASTE

The following investigation-derived wastes (IDW) were generated and disposed of as hazardous waste during the remedial activities and groundwater monitoring events from December 2013 through February 2014:

- Five drums of personal protective equipment waste (gloves, Tyvek® suits, etc.).
- Two drums of used bentonite from augering waste.
- Two drums of water and 3DMe from injectate mixing tank cleaning.
- One drum of soil cuttings from drilling and sampling events, along with asphalt from coring for injection points.
- One drum of concrete cores from coring for injection points.
- One drum of purge water from onsite wells.

A total of 12 drums of hazardous waste were generated. One drum of non-hazardous oil absorbent mixed with hydraulic oil generated during August 2013 waste also collected at the same time. The drum was generated when a hydraulic line broke on a truck that was present onsite to pick up soil generated during the excavation in the wastewater treatment room.

As they were generated, the drums were labeled with a hazardous waste label which included content information and the accumulation start date. The drums were staged in a secured hazardous waste accumulation area in the onsite building and inspected weekly by a representative of RBTC. RBTC made arrangements for pick-up on May 5, 2014 and offsite disposal of the wastes through direct contract with Heritage Environmental Services. Waste disposal manifest documentation is included in Appendix E.

3.0 POST-INJECTION MONITORING

During and following completion of the injections, monitoring was performed to determine the effectiveness of the selected technologies in the source and plume areas. The following monitoring was completed:

- Well Redevelopment and RPI Sampling On February 6, 2014, TW-6, TW-10, TW-13 and MW-11A were redeveloped to ensure connection with the surrounding formation prior to sampling. On February 7, 2014, groundwater samples were collected from the wells and samples were submitted to RPI for analysis.
- 7-Day Post Injection Field Parameter Collection Event Approximately one week after the injections were completed, on February 13, 2014, MW-3, MW-4, MW-5, MW-7, MW-8, MW-13, MW-17, MW-21, MW-22, MW-28 and TW-19 were fieldtested for pH, SC and temperature.
- 30-Day Post Injection Field Parameter Collection Event Approximately one month
 after the injections were completed, on February 26, 2014, the above wells (plus
 MW-14 and with the exception of MW-28) were again field-tested for pH, SC and
 temperature.
- Water Level Readings On April 29, 2014, water level readings were collected from all wells to determine if well fouling (e.g., biological growth or presence of BOS 100 particulates) was occurring and redevelopment of selected wells would be necessary ahead of groundwater sampling.
- Well Redevelopment and Passive Diffusion Bag (PDB) Placement Based on visual appearance of water in the wells and water level measurements collected on April 29, 2014, AMEC redeveloped four wells on May 8, 2014 (MW-21, MW-22, MW-5, and MW-26). In addition AMEC placed PDBs in PW-1, PW-2 and the Kiper well.
- <u>Site-Wide Groundwater Sampling</u> Approximately 90 days after the injection, from May 19, 2014 to May 22, 2014, a full round of groundwater sampling was conducted. Field parameters, water level measurements and samples for VOCs (USEPA Method 8260B) were collected from all onsite wells. In addition, the following analyses were performed:
 - Chloride (USEPA Method 325.2) and iron (USEPA Method 6010) were analyzed in groundwater samples from MW-11A, MW-11B, MW-12A, MW-12B and TW-10 (wells in the primary source area).
 - Methane, ethane and ethene (USEPA Method RSK 175) and total organic carbon (USEPA Method 9060) were analyzed in groundwater samples from MW-3, MW-4, MW-5, MW-7, MW-8, MW-13, MW-17, MW-21, MW-22, MW-23 and SW-4 (wells in the secondary source areas).
 - BOD (USEPA Method 5210 B) and COD (USEPA Method 410.4) were analyzed in the groundwater sample from MW-14.

Groundwater samples collected during the events described above were stored in laboratory-provided containers and preserved according to method requirements. They

were maintained chilled in iced coolers, and shipped by overnight carrier to ESC for laboratory analysis. Water level readings are included on **Table 3**. Field parameter readings collected during the various monitoring events are summarized in **Table 4**. The full laboratory reports for the May 2014 sampling event are provided in **Appendix D**. Long-term hydrographs showing groundwater levels over time are provided in **Appendix F**.

3.1 GENERAL POST-INJECTION GROUNDWATER CONDITIONS

During injections, both BOS 100 and 3DMe moved through the subsurface and penetrated selected monitoring wells located in the injection areas. Fine particles of BOS 100 were observed in the permanent wells (MW-11A, MW-11B, MW-12A, MW-12B, MW-25, and MW-27) as well as the remediation test wells (TW-6, TW-9, TW-10, and TW-13) in the BOS 100 injection area. Evidence of 3DMe (based on color and/or elevated SC) was observed in the permanent wells (MW-3, MW-4, MW-5, MW-7, MW-13, MW-17, MW-21, MW-22 and MW-23) in the 3DMe injection areas.

3.1.1 Well Redevelopment

The wells that appeared to be impacted the most were redeveloped and purged prior to the sampling events on February 6, 2014 (MW-11A, TW-6, TW-10, and TW-13) and May 8, 2014 (MW-5, MW-21, MW-22, and MW-26), in order to try and clear the monitoring wells of remnant BOS 100 and 3DMe, re-establish connection with the surrounding formation, and obtain representative potentiometric readings.

Redevelopment was performed by surging with a clean disposable bailer, then purging with a peristaltic pump equipped with clean disposable food-grade tubing. Alternatively, some wells were redeveloped and purged by using a Waterra inertial pump equipped with clean disposable food-grade tubing and a foot valve. Each well was redeveloped and purged until water appeared clear. After purging, most wells were observed to continue producing some evidence of injected materials. In general, these wells cleared up further, and yield was improved, in the subsequent purging and sampling events.

During the February 6, 2014 redevelopment event, approximately 2 feet of BOS 100 were found in the bottom of MW-11A (as evidenced by a change in the total depth of the well and presence of BOS 100 during well purging). The total depth of the well prior to redevelopment was 12.95 feet below the top of casing, after redevelopment it was 14.34 feet below the top of casing. The reported total depth of the well is 14.8 feet.

3.1.2 Water Level Gauging

Full rounds of water level gauging were performed on December 3, 2013, April 29, 2014 and May 19, 2014. Groundwater elevation contour maps for pre- and post-remedial activities are provided as **Figure 6** (December 3, 2013) and **Figure 7** (May 19, 2014).

Long-term hydrographs showing groundwater levels over time are provided in **Appendix** F. Overall, water level readings and hydraulic relationships between monitoring points were similar to previous conditions. The lateral hydraulic gradient in the shallow groundwater zone remained generally from the southwest to the north-northeast, toward the Beaverdam Creek drainage north of Embry Drive. Additional discussion is provided below in Section 4.1.

3.2 FIELD PARAMETER COLLECTION EVENTS

On February 13 and 26, 2014, the monitoring wells mentioned at the beginning of Section 3.0 were sampled by AMEC for field parameters. The wells were purged and sampled using disposable bailers. Field parameters (pH, SC and temperature) were obtained using a multi-parameter meter (Hanna HI 9812-5).

3.3 GROUNDWATER SAMPLING

3.3.1 February 7, 2014 Sampling Event

On February 7, 2014, AMEC collected groundwater samples from wells that had in part been redeveloped the previous day. Samples were collected with a peristaltic pump from wells TW-6, TW-10, MW-11A, MW-11B, TW-13 and MW-25. Prior to collecting samples, because well development had occurred the previous day, a minimum amount of water was purged from each location. Samples were sent to RPI for VOC analysis.

3.3.2 PDB Placement

On May 8, 2014, AMEC personnel installed PDBs in three former water supply wells, including the two onsite water supply wells (PW-1 and PW-2) and the former water supply well on an offsite property (Kiper Well). At PW-1 (depth is reportedly 367 feet) the PDB was placed at approximately 290 feet below the top of the casing. Based on the results of the down hole logging performed in February 2012, PDB placement considered the depth of the obstructions seen in PW-2 and the Kiper Well. Because of the obstruction in PW-2 at approximately 136 feet (total well depth is estimated to be approximately 475 feet), the PDB was placed at approximately 135 feet below the top of casing. At the Kiper Well (depth is reportedly 80 feet deep), the PDB was placed at approximately 39 feet below the top of the casing.

3.3.3 90-Day Post Injection Sampling Event

From May 19 through 22, 2014, 54 wells were sampled by AMEC for VOC analysis, including 37 permanent shallow and mid-level monitoring wells (MWs), 10 remediation test wells (TWs), four sentinel wells associated with the BOS treatment area (SWs), and three former water supply wells (PWs and Kiper well).

Most permanent wells and most remediation test wells yielded enough water to reach equilibrium with the geochemical conditions in the surrounding groundwater flow zone, with the exception of well MW-21, remediation test wells TW-6, TW-13, TW-18, TW-19, and sentinel wells SW-1, SW-2, SW-3, and SW-4. These wells had too low a yield to reach equilibrium conditions, generating between 1/4 and one gallon of purge water per well, before being purged dry. The wells were allowed to recover for a few hours to overnight, and samples were collected using a peristaltic pump equipped with clean disposable food-grade tubing. At each well, a groundwater sample was collected from the middle of the water column and transferred into laboratory-supplied containers for VOC analyses.

In addition to the VOC analyses, samples from 11 wells in the secondary source areas (MW-3, MW-4, MW-5, MW-7, MW-8, MW-13, MW-17, MW-21, MW-22, MW-23, and SW-4) were analyzed for methane, ethane, and ethene by USEPA Method RSK 175 and TOC by USEPA method 9060. Additionally, five wells in the primary source area (MW-11A, MW-11B, MW-12A, MW-12B and TW-10) were analyzed for chloride by USEPA Method 325.2 and iron by USEPA Method 6010. The sample collected from MW-14 was also analyzed for BOD and COD.

The PDBs that had been placed in the three former water supply wells were removed on May 22, 2014 by AMEC personnel. Contents of the PDBs were transferred into 40-mL VOA vials preserved with hydrochloric acid, and submitted for VOCs analysis (USEPA Method 8260B).

Field quality control (QC) samples collected during groundwater sampling included four blind field duplicate samples (one for each day of sampling), from MW-3, MW-7, MW-11A, and TW-13, and two laboratory-provided trip blanks which accompanied the samples in the coolers shipped this monitoring event. The collected groundwater samples were shipped to ESC for analysis.

4.0 REMEDIATION IMPLEMENTATION RESULTS

This section summarizes the results of the remediation activities in terms of potentiometric levels, field groundwater quality results, and laboratory analytical results from sampling performed.

Trend analyses were performed for three CVOCs: TCE, cis-1,2-DCE and VC. In the trend analyses, current results are summarized in **Table 9** and compared to the baseline (pre-remediation) concentrations from June 2012, on a well-by-well basis. **Figures 8 and 9** provide the results and contour maps for total CVOCs both before and after the most recent remedial activities (in June 2013 and May 2014, respectively), and **Figures 10 and 11** provide the results and contour maps for TCE. Analytical summary tables and trend graphs of selected parameters and results in selected wells over time are provided in **Appendix G**. The remediation performance results are discussed below, for each of the four treatment areas, following the discussion of potentiometric conditions.

4.1 POTENTIOMETRIC CONDITIONS

Figure 6 is a groundwater elevation contour map for the shallow zone (the groundwater flow zone at the soil-bedrock interface), drawn from measurements made on December 3, 2013, immediately prior to the most recent remedial activities. Throughout the remedial activities, due to the high quantity of fluids injected, groundwater levels were intermittently measured in the permanent wells closest to the injection sites, and were observed to be temporarily and locally raised above the static levels measured in December.

Figure 7 is a groundwater elevation contour map for the shallow zone drawn from measurements made on May 19, 2014 during the 90-day post-remediation groundwater monitoring activities. Overall, water level readings and hydraulic relationships between monitoring points were similar to pre-injection conditions, indicating that the temporarily raised groundwater levels resulting from the injections dissipated and had returned to static levels over the three months since injection. The lateral hydraulic gradient in the shallow groundwater zone, as illustrated in the groundwater level elevation contour maps, remained generally from the southwest to the north-northeast, toward the Beaverdam Creek drainage north of Embry Drive.

Similar to previous post injection results, some wells are yielding water level readings that are anomalous by comparison to the surrounding wells. These included MW-5, MW-8, MW-22 and MW-26 (December 2013) and MW-8 and MW-21 (May 2014). MW-31 had an anomalous reading during the May 2014 event; however, this reading was related to a problem with the well seal causing surface water to enter the monitoring well. The data from these wells were disregarded in preparing the groundwater potentiometric map for the shallow groundwater zone, as noted on the map.

4.2 SOURCE AREA (BOS 100) RESULTS

BOS 100 was used to treat the primary source area, where baseline groundwater concentrations total CVOCs (TCVOCs), prior to any injections, were generally greater than 50 mg/L. BOS 100 injections in 2013-2014 (Figures 5, 5A, 5B, 5 C, and 5D) were performed in areas where groundwater CVOC concentrations continued to persist at elevated concentrations, and in the additional source area identified in 2012, the former WWTR. Sumps in the WWTR were closed in August 2013; however, soils below the sumps had not been treated previously. Persistence of concentrations in some of the previously treated areas was attributed to uneven applications and problems with attaining the necessary depths of injection. Therefore, additional BOS 100 injections were completed in the following main areas:

- Zone 1B near MW-25 and TW-6 (Figure 5A), where it had been concluded that irregular and incomplete distribution of BOS 100 in the vicinity of TW-6 caused differences in groundwater concentrations between two similarly installed wells close to each other.
- Zone 2 near MW-11A, MW-11B and TW-10 (Figure 5B), where it had been concluded that irregular and incomplete distribution of BOS 100 in the fissile shale bedrock in the vicinity of MW-11A caused differences in groundwater concentrations between two similarly installed wells close to each other.
- Zone 6 near TW-13 (Figure 5C), where it was concluded that irregular distribution
 of BOS 100 due to obstructions in the building floor caused elevated levels of
 CVOCs to persist in groundwater in the area.
- Zone 7 (Figure 5D), a newly created zone associated with the WWTR on the west side of the building.

Shallow zone wells within the BOS 100 injection area include: permanent monitoring well pairs MW-11A/B and MW-12A/B; permanent monitoring wells MW-25, MW-26, MW-27; remediation test wells TW-5, TW-6, TW-9, TW-10, TW-11, TW-12, TW-13 and TW-14; and sentinel wells SW-1, SW-2, SW-3 and SW-4. All wells in this area were sampled during the 90- day sampling event.

4.2.1 Field Parameter Monitoring

Groundwater field parameters are used most commonly to determine when monitoring wells have been adequately purged and groundwater samples are representative of the surrounding aquifer. Current treatment with BOS100 involves carbon sorption and chemical reduction with iron, so field parameter ranges and trends are not predictive of the success of treatment. However, when evaluating the timing for transition to bioremediation, these parameters and their trends over time provide important indications of the potential for natural degradation of groundwater contaminants. In general, field parameters collected as part of the groundwater monitoring included turbidity,

temperature, SC, pH, DO and ORP. However, because of the presence of remnant BOS 100 in many of the wells in the injection area, collection of data related to DO, ORP and turbidity was limited during some of the sampling events. **Table 4** provides the recorded results of field parameter monitoring since February 2012, and trend graphs depicting certain field parameters over time are included in **Appendix G**.

Similar to the previous injections, except for increased turbidity in some wells due to the presence of BOS 100, the injection of BOS 100 appears to have had little effect on most of the field parameters. This is both an expected and desired result, since ideally the BOS 100 does not introduce any dissolved materials into the aquifer, although field parameter changes can result from the introduction of potable water in the BOS 100 slurry during injections and from scavenging of dissolved oxygen by the iron component of BOS 100.

4.2.2 Groundwater Analytical Results

Trend analyses performed on the data for TCE, cis-1,2-DCE and VC are provided in **Table 9**, except for TW-6. TW-6 has not been included on the table due to anomalous initial results from June 2012. In addition, tables and analytical graphs depicting certain analytical parameters over time are included in **Appendix G**.

After the first BOS 100 injection, with the exception of TW-6 and MW-11A, concentrations of all CVOCs in the BOS 100 area wells declined steadily during the first two months, and had rebounded slightly by the third month. Most wells declined by two and up to three orders of magnitude without significant rebound by 90 days. The following summarizes significant results after the second round of injections in the selected areas of the zones treated with BOS 100:

- In TW-6 (next to MW-25), the pre-injection concentration of TCE was only 0.23 mg/L in June 2012 (possibly indicating the well had not fully stabilized at the time the June 2012 sample was collected or that the subsequent BOS 100 injections altered groundwater flow pathways in the vicinity of TW-6), whereas the post-first injection concentrations were 15 mg/L (December 2012) and 18 mg/L (February 2013). By June 2013, the concentration of TCE was 26 mg/L. After the second injection, in February 2014, the concentration of TCE was 0.041 mg/L but by May 2014, had increased to 8.0 mg/L. By comparison, TCE in MW-25 started at 2.6 mg/L in June 2012, dropped to 0.48 mg/L in December 2012, rebounded to 1.1 mg/L in June 2013, and was 0.68 mg/L in May 2014. As seen in Tables 1 and 2, MW-25 and TW-6 have similar bottom elevations, but MW-25 has an 8-ft screen length, while TW-6 has a 5-ft screen so the wells are not sampling from identical depth intervals.
- In MW-11A (the deeper well of the MW-11A/B pair), after the first injection event in late 2012, concentrations of TCE fell at first (from 43 to 8.1 mg/L), then increased back over half of the pre-injection levels (to 22 mg/L) by February 2013. In June 2013, concentrations had increased to 34 mg/L; however, after the second injection event, concentrations of TCE decreased to 1.2 mg/L (1.4 mg/L TCVOCs),

which is a 97% reduction in TCE levels since June 2012. Cis-1,2-DCE and VC also had reductions of 94% and 95% respectively. Therefore, it appears that the first injection did not provide an adequate dose for the mass of VOCs in the surrounding aquifer and the second injection was more successful by providing additional BOS 100 and also achieving better distribution. However, additional monitoring will be required to evaluate rebound (if any).

- In TW-13, after the first injection event, concentrations of TCE decreased by 98% (from 72 mg/L to 1.1 mg/L) but were still over 1 ppm. Therefore this area was identified as an area requiring more BOS 100. By June 2013, before the second injections, the concentration of TCE in TW-13 had increased to 3.3 mg/L. After the second injection, the concentration was 3.9 mg/L. TW-13 is located downgradient of the old Henry Filter pit, and the disturbed fill around the pit likely is acting as a preferential pathway. Additional BOS 100 injections provide additional reagent dosage, but also alter groundwater flow by providing additional fractures.
- In MW-12B (the shallower of the two wells in the MW-12A/B pair, in Zone 5), concentrations of TCVOCs from the initial injection decreased over 2 orders of magnitude from 83 mg/L (June 2012) to 0.89 (June 2013); however, after the second injection event, concentrations have increased an order of magnitude to 2.5 mg/L. However, this increase in TCVOCs is primarily related to an order of magnitude increase in cis-1,2-DCE levels, and could indicate some migration of groundwater into this area from outside the BOS 100 treatment area. Both SW-1 and SW-2 analyses showed that elevated TCE and TCVOC concentrations were present at the perimeter of the BOS treatment area upgradient of MW-12B.
- Concentrations of CVOCs for the remaining wells in the BOS 100 injection area have continued to remain low, with an over 97% reduction in TCE levels, 96% reduction in cis-1,2-DCE levels and 64% reduction in VC levels (the statistics for VC area are skewed by a detection limit elevated above previous reported concentrations in MW-25 during the May 2014 sampling event – most wells have over 95% reduction in VC levels).
- Remaining wells with concentrations of TCVOCs over 1 mg/L are MW-11A (related to TCE), MW-12B (related to cis-1,2,-DCE), TW-6 (related to TCE), TW-13 (related to TCE), and two newly sampled sentinel wells on the edge of the BOS 100 injection area, SW-1 (TCVOCs at 2.3 mg/L and TCE at 1.7 mg/L) and SW-2 (TCVOCs at 76 mg/L and TCE at 57 mg/L). The closest well to SW-2 within the BOS-100 injection area is TW-9 which has a TCVOC level below 1 mg/L (0.44 mg/L in May 2014).

In May 2014, MW-11 A, MW-11B, MW-12A, MW-12B, and TW-10 were also sampled for chloride and iron. Chloride concentrations ranged from 12 mg/L (MW-11A) to 66 mg/L (MW-12A/B). Iron levels ranged from 0.098 mg/L (MW-11A) to 2.8 mg/L (MW-12B).

Based on these results, the BOS 100 appears to have been very effective in reducing CVOC concentrations in the source area overall, by one to three orders of magnitude. However there are areas where VOCs persist, specifically VOCs related to the primary

plume of TCE in the vicinity of TW-6, TW-13 and SW-2. Increases in cis-1,2-DCE relative to TCE in the vicinity of MW-12A/B may be related to inflow of groundwater from outside the BOS 100 treatment area.

4.3 SECONDARY SOURCE AREA (BIOSTIMULATION) RESULTS

Biostimulation injections with 3DMe were applied in the secondary source areas, where baseline groundwater TCVOC concentrations prior to any injections were between 10 mg/L to $50~\mu g/L$. As part of the secondary source area injections, eight new permanent injection wells were installed (four in the vicinity of MW-5, three in the vicinity of MW-17 and one in the plume area near MW-3), and existing injection wells were used for delivery of product.

4.3.1 Field Parameter Monitoring

Table 4 provides the recorded results of field parameter monitoring since February 2012. After injection, many of the wells could not be monitored for DO and ORP because of the presence of remnant 3DMe in the wells, which prevented purge water from being run through direct-read flow-through cell equipment, due to the risk of fouling the sensors. SC and temperature readings were collected using a non-flow-through direct read instrument.

Ideal conditions for reductive dechlorination of TCE typically include: a pH of 5 to 9 s.u.; DO less than 1 mg/L; and ORP between -100 and -225 millivolts (mV). However, evidence of dechlorination is sometimes observed with ORP between 0 and -50 mV. pH was within the ideal range for all wells, DO of less than 1 was reported for MW-5, MW-17 and MW-22 in May 2014, and ORP was within ideal conditions in May 2014 in MW-5 and MW-17. The biostimulation design is intended to create "mixed behavior" between the injection rows. Methanogenic conditions are present immediately adjacent to the injection wells (ORP < -225 mV), ideal reducing conditions downgradient, and aerobic conditions upgradient of the next injection row (ORP > 0 mV and DO > 1 mg/L) to prevent the accumulation of VC.

4.3.2 Groundwater Analytical Results

After the initial 3DMe injections, TCE concentrations in the secondary source area wells (MW-5, MW-8, MW-17 and MW-22) declined significantly at least one and in some cases two orders of magnitude. As anticipated, cis-1,2-DCE, 1,1-DCE and VC concentrations increased sometimes by as much as an order of magnitude over the same time period.

After the second injection, results were mixed with respect to TCE. TCE was not detected in MW-8, MW-17 or MW-22 in May 2014; however, TCE concentrations increased by an order of magnitude in MW-5 which is likely impacted by upgradient conditions at the BOS 100 treatment area. Overall, TCE concentrations have not rebounded and have been reduced by 97% compared to baseline (June 2012) levels and TCE concentrations in

MW-5 are still an order of magnitude below original levels (3.1 mg/L versus baseline of 30 mg/L).

With respect to degradation compounds, cis-1,2-DCE and VC levels are now decreasing, compared to the initial increase after the first injection. The exception is cis-1,2-DCE in MW-8, which continues to increase above baseline and first injection levels.

Methane, ethane and ethene were also analyzed in May 2014 at MW-5, MW-8, MW-17 and MW-22. As reductive dechlorination occurs, ethane, and ethene levels will increase. A widespread excess of methane (> 50 mg/L) combined with ORP below -225 mV would suggest that methanogenesis is dominating, which would decrease the efficiency of dechlorination. However, the intent of the biostimulation design is to foster "mixed behavior." This assumes methanogenic conditions (ORP <-225 mV) at the temporary and permanent injection wells, favorable dechlorinating conditions immediately downgradient (-50 mV >ORP >-225 mV), and aerobic conditions (ORP > 0 mV) upgradient of the next injection row. Ethane was only detected in MW-17. Ethene was detected and is increasing in MW-5, MW-17 and MW-22. Methane has increased an order of magnitude in MW-5, MW-17 and MW-22 since last sampled in February 2013 (MW-8 was not sampled for methane in February 2013). Methane detections ranged from 0.45 mg/L in MW-5 to 5.3 mg/L in MW-17. The presence of detectable methane, ethane, and ethane along with ORP ranging from +35.7 to -40.2 mV at these monitoring wells indicates the desired mixed behavior between injection rows.

Based on these results, 3DMe appears to have been very effective in reducing CVOC concentrations in the secondary source areas overall, by one to three orders of magnitude. However, in MW-5, TCE concentrations, which had decreased by two orders of magnitude after the first injection, increased by one order of magnitude after the second injection. MW-5 is unique at the site, since it is located cross-gradient to the nearest injection wells and down-gradient of the BOS 100 treatment area. Groundwater at MW-5 is impacted by residual VOCs from the BOS 100 and, being at the leading edge of the biostimulation area, bioremediation effects are mainly occurring downgradient. Additional VOC reductions can be achieved by implementing biostimulation in the BOS 100 area and particularly at the downgradient edge near MW-27, TW-13, and TW-14.

4.4 PLUME AREA (BIOSTIMULATION) RESULTS

Biostimulation injections were also applied in the less concentrated plume areas across the site, outside of and around the secondary source areas, where baseline TCVOC concentrations in groundwater initially were below 10 mg/L.

4.4.1 Field Parameter Monitoring

During May 2014, DO and ORP levels were "ideal" (see Section 4.3.1 above) for reductive dechlorination in most plume area wells including MW-4, MW-7, MW-13, MW-14, MW-21 and MW-23.

4.4.2 Groundwater Analytical Results

After the original injection, TCE concentrations in the wells included in the post-injection monitoring for the plume biostimulation area decreased by at least an order of magnitude in all wells without significant rebound in any well at the 90-day post-injection monitoring event. After the second event, TCE concentrations remained at least an order of magnitude below the baseline conditions except in MW-21, where TCE concentrations returned to baseline conditions (0.15 mg/L in June 2012 and in May 2014). Cis-1,2-DCE and VC concentrations are increasing in MW-21, and are at least an order of magnitude above baseline conditions. Increasing concentrations in MW-21 may be related to impacts in the shallow groundwater zone below the residential properties upgradient of that well, which have not been treated as part of the remedial activities.

Methane detections ranged from 1.7 mg/L in MW-21 to 10 mg/L in MW-4. These are indicative of the desired mixed behavior with methanogenic conditions at the injection rows and suitable dechlorinating conditions between rows.

Of the wells monitored in the plume (non-source) areas, MW-23 appears to have exhibited the best response to biostimulation. The TCE concentration in this well in May 2014 (0.028 mg/L) was two orders of magnitude below baseline concentration (1.1 mg/L)., cis-1,2-DCE concentrations were an order of magnitude above baseline conditions and VC concentrations were three orders of magnitude above baseline conditions. Nevertheless, TCVOCs in May 2014 (0.4 mg/L) were almost an order of magnitude below baseline (1.2 mg/L).

4.5 AEROBIC BIOREMEDIATION - ORC PILOT TEST RESULTS

The purpose of applying ORC was to evaluate pote tial acceleration of the breakdown of aerobically degradable daughter compounds of TCE (cis-1,2-DCE and VC). ORC filter socks are designed to provide a supply of DO to sustain or accelerate bioremediation over a period of 9-12 months (estimated). Because AMEC wanted to evaluate ORC's effectiveness in preventing accumulation of VC, MW-14 was selected as the pilot test area because the well had no detection of PCE and TCE and very low detections of the target daughter products.

The filter socks were placed in MW-32, a well installed in the immediate vicinity of MW-14, on January 24, 2014. Prior to placement of the ORC socks, DO levels and samples were collected from both wells on January 17, 2014. Prior to any remediation in the area, cis-

1,2-DCE and VC levels in MW-14 were 0.035 mg/L and 0.0056 mg/L, respectively. Prior to placement of the filter socks in MW-32, those levels were 0.028 mg/L and 0.0019 mg/L, respectively. On May 20, 2014, approximately 4 months after placement of the socks, concentrations of the two compounds were 0.021 mg/L and 0.0017 mg/L, respectively, in MW-14.

BOD and COD levels are also indicators of whether ORC is affecting groundwater chemistry and biological activity. Both should decrease in the presence of oxygen. However, in MW-14, both have increased since placement of the socks (BOD has increased from not detected at 5 mg/L to 7.6 mg/L and COD has increased from 21 mg/L to 33 mg/L). The baseline BOD/COD levels were higher at MW-32 than at MW-14, indicating a significant amount of 3DMe breakdown products moving downgradient toward MW-14. These amendment residuals appear to have overwhelmed any additional DO provided by the ORC.

Based on the results to date, AMEC cannot conclude definitively if the ORC application is impacting the bioremediation. While levels of cis-1,2-DCE and VC have decreased over time during the remedial injections, the levels prior to placement of the ORC socks and post placement of the ORC socks were not markedly different and, as shown in Appendix G, the trend has been downward since 2012, prior to ORC placement.

The filter socks are still present in MW-32. While the manufacturer estimates the life of the ORC is approximately 9-12 months, to evaluate if ORC is exhausted, a multi-faceted evaluation should be conducted. DO readings viewed alone can be misleading because the measure indicates the amount of DO in excess of what is being consumed by the available aerobic microbes. Contaminant concentrations should also be considered. Therefore, given the CVOC concentrations, it is recommended that the ORC filter socks be kept in MW-32 through at least one more round of groundwater sampling.

4.6 ANAEROBIC BIOAUGMENTATION - DHC PILOT TEST RESULTS

DHC microbes contained in BDI, the DHC mixture applied to the shallow zone in the area of MW-13, are proven to dechlorinate CVOCs during in situ bioremediation if the population is sustained or increased under the appropriate geochemical conditions. Specifically, BDI can be used to assist with dechlorination of intermediate compounds and provide complete dechlorination of TCE, so that it doesn't stall after breakdown of 1,2-dichloroethene (1,2-DCE). The injection wells close to MW-13 were selected as the pilot test area for injection of BDI because the well had already showed evidence of TCE breakdown, and had relatively low detections of TCE and cis-1,2-DCE, both about one order of magnitude above their respective Maximum Contaminant Levels (MCLs).

Chemical concentrations were used as the measure of success for the BDI application. Prior to application of the BDI in October 2013, TCE and cis-1,2-DCE were detected at 0.0096 mg/L and 0.19 mg/L respectively (above the MCLs of 0.005 mg/L and 0.07 mg/L).

After application of the BDI in May 2014, both TCE and cis-1,2-DCE dropped below their respective MCLs to 0.0029 mg/L and 0.016 mg/L respectively. In the case of VC, the baseline concentration in MW-13 was 0.031 mg/L, and the concentration increased to a maximum of 0.12 mg/L after the first injections. In May 2014, after the BDI application, the VC concentration in MW-13 was 0.013 mg/L, still above the MCL of 0.002 mg/L but three times lower than the baseline concentration.

Based on the results of the DHC pilot test, it appears that BDI may be effective to assist with continued dechlorination in the plume area, after the majority of bioremediation processes have progressed and in the event remediation stalls with low levels of CVOCs remaining in the shallow zone groundwater.

5.0 CONCLUSIONS

The effectiveness of the remedial treatments to date in the shallow groundwater zone have been discussed in the previous section in terms of concentration trends well-by-well (as illustrated by the graphs in **Appendix G**), within each of the three main treatment areas. The following broad conclusions can be drawn regarding the status of groundwater remediation in each of the treatment areas:

- In the primary source area treated with BOS 100 (where baseline concentrations of TCVOCs were greater than 50 mg/L), concentrations continue to remain low, with an overall reduction in TCE still at 97% below baseline conditions. The highest remaining concentrations in groundwater at the site (with TCVOCs greater than 10 mg/L) are at the edge (SW-2) or outside (MW-5) of the BOS 100 treatment area. However, despite less day-lighting of the BOS 100 and implementation of field methods to provide better distribution horizontally and vertically during the second injection, localized hot spots still persist with TCVOC concentrations exceeding 1 mg/L, as monitored by TW-6 and TW-13. Based on currently available information, therefore, it appears that available injection techniques cannot place sufficient BOS 100 into all contaminated depth intervals. It is also possible that residual product trapped in the shallow to mid-level bedrock below the level of injection in the treated zones may be contributing to localized rebounding. BOS 100 treatment is reaching the limitations of effectiveness in the source area due to both contact efficiency and sorption kinetics.
- In the secondary (or outer) source areas treated by biostimulation with 3DMe, where baseline concentrations of TCVOCs were between 10 and 50 mg/L, concentrations continue to remain low, with an overall reduction in TCE still at 97% below baseline conditions. Concentrations of CVOCs at MW-17, where a significant amount of injections occurred, are now all below the MCLs compared to a baseline TCVOC concentration of 23 mg/L. However, concentrations are increasing at MW-5, indicating possible residual product at depth in this area, as discussed in the previous paragraph.
- In the outer plume areas treated by biostimulation with 3DMe, where baseline concentrations of total CVOCs were below 10 mg/L, there is evidence that TCE is degrading and total CVOC concentrations are decreasing. Several wells which historically have had CVOCs above the MCLs now have no MCL exceedances, including MW-1, MW-4, MW-7, MW-10, MW-18 and MW-28. This indicates that biostimulation has been effective in the plume area, and the edges of the plume are shrinking. The exception is MW-21 where, despite evidence of breakdown after the first injection, TCE concentrations have returned to baseline concentrations and degradation compound concentrations are also increasing. Rebound in the area of MW-21 is most likely related to inflow of untreated groundwater from the residential properties to the south and southwest of that well.

Another way to evaluate the effectiveness of the shallow zone remediation is to measure changes in the areas represented by each band within the overall groundwater plume maps. It is important when making this assessment to take into consideration the changes in concentration of TCE (the parent compound) as well as the changes in

TCVOC concentrations. This is because degradation of TCE can temporarily cause an increase in the concentrations of daughter products, resulting in no changes, or even increases, in TCVOC concentrations. It is also important to note that there is significant inaccuracy in the areal estimates, since the accuracy of concentration mapping is limited by the number and location of the available monitoring points. Nevertheless, plume areas have decreased in response to the remedial injections, as illustrated by the TCVOC concentration maps for shallow groundwater in June 2013 and post-remediation included as **Figures 8 and 9**, and the TCE concentration maps included as **Figures 10 and 11**.

TCVOC concentration areas greater than 10 mg/L have decreased from 27,600 square feet (SF) pre -injection, to 15,100 SF after injection #1 and 700 SF after injection #2. This correlates to a 45% reduction after injection # 1 and a cumulative reduction of 97% after two injections.

TCVOC concentration areas greater than 1 mg/L have decreased from 91,000 SF pre-injection, to 55,000 SF after injection #1 and 67,000 SF after injection #2.

TCE concentration areas greater than 10 mg/L have decreased from 25,000 SF preinjection, to 1,500 SF after injection #1 and 200 SF after injection #2. This correlates to a 94% reduction after injection #1 and a cumulative reduction of 99% after two injections.

TCE concentration areas greater than 1 mg/L have decreased from 44,000 SF preinjection, to 11,000 SF after injection #1 and 5,000 SF after injection #2. This correlates to a 75% reduction after injection # 1 and a cumulative reduction of 88% after two injections.

While remedial injections have been very effective at reducing the plume size overall, the plume extent and the concentrations of CVOCs, there remain areas where some rebound is apparently occurring. However, additional monitoring events are necessary to fully evaluate long-term trends, and additional monitoring is recommended prior to recommending additional investigations or amendments to the ongoing remediation. An additional monitoring event was conducted the week of August 25, 2014. and one more 2014 quarterly sampling event is tentatively scheduled for November 2014. The need for additional remedial actions, if any, will be evaluated after the monitoring events.

6.0 QUALIFICATIONS OF REPORT

Our report presents a summary of information known to AMEC concerning the project site which AMEC considered pertinent to the scope of work and stated project objective. AMEC has assembled data produced by itself and others and used that information to make analyses of site conditions. AMEC has performed this investigation with the care and skill ordinarily used by members of the environmental consulting profession practicing under similar conditions. The activities and evaluative approaches used in this assessment are consistent with those normally employed in environmental assessments and waste-management projects of this type. Our evaluation of site conditions is based on our understanding of the site and project information and the data obtained in our assessment. The general subsurface conditions utilized in our evaluation have been based on interpolation of subsurface data between the sampling locations. conclusions presented herein are those that are deemed pertinent by AMEC based upon the assumed accuracy of the available information. No other warranty, expressed or implied, is made as to the professional advice included in this report. The information presented in this report is not intended for any use other than the stated objectives of the project.

Table 1
Well Construction Summary - Permanent Monitoring Wells and Former Water Supply Wells
RBTC LDB #1, Leitchfield, Kentucky
AMEC Project 622-1-12-1002

Well ID	KDOW AKGWA#	Completion Date	Inner Casing Diameter (in)	Boring Depth (ft BGS)	Sounded Well Depth (ft BMP)	Length of Perforated Section (ft)	Ground Surface Elevation (ft NAVD)	Measuring Point Elevation (ft NAVD)	Casing Stick-Up (ft AGS)	Top of Screen Elevation (ft NAVD)	Mid- Screen Elevation (ft NAVD)	of Well Elevation (ft NAVD)
Former Supp				(1	1	(11111111111111111111111111111111111111	(11111111111111111111111111111111111111	(111100)	(Acround)	(icitatio)	(ILTERACE)
PW-1	0002-0656	4/17/1987	8	367	334	154	724 4	725.58	1.15	513	436	359
PW-2	N/A	10/10/1974	6	527	440+	***	711.3	712.36	1 09	***		est. 236
Hack (offsite	N/A	N/A	6	***	37.4		222	10.00	est, 0			***
Kiper (offsite	N/A	N/A	6		80	***	***	***	est, 1			
Monitoring V									0.34.			
MW-1	8005-3213	3/21/2007	2	17.8	17.4	9.4	723.9	723 51	-0.4	715.5	7108	706.1
MW-2	8005-3214	3/15/2007	2	17.8	17 4	9.4	711.4	710 98	-0.4	703 0	698 3	693 6
MW-2M	8005-6303	5/5/2009	2	410	40.6	10.0	711.4	710.93	-0.5	680 3	675.3	670 3
MW-3	8005-3215	3/14/2007	2	17.5	16.9	9.4	710.5	710 02	-0.5	702 5	697.8	693.1
MW-4	8005-3216	3/14/2007	2	14.5	13.8	7.0	7095	709.10	-0.4	702.3	698 8	695 3
MW-5	8005-3217	3/14/2007	2	24.5	23 6	9.4	707.2	706.78	-0 4	692.6	687.9	683 2
MW-5M	8005-6304	5/6/2009	2	38.2	37.2	10.0	707.2	706 40	-0.8	679 3	674 3	669 3
MW-6	8005-3218	3/21/2007	2	10 D	96	4.8	704.1	703.66	-0 4	698 B	696 4	694 0
MW-7	8005-3219	3/15/2007	2	13.7	12.5	5.6	703 3	702.54	-0.7	695 6	692 8	690 0
8-WM	8005-3220	3/15/2007	2	20 0	19.0	9.4	709.1	708 68	-0.5	699.1	694 4	689 7
MW-WM	8005-6301	5/5/2009	2	39.6	39 4	10.0	709.5	708.87	-0.6	679.5	674.5	669 5
MW-9	8005-3705	5/27/2008	2	16.8	15.5	9.4	7113	710 93	-0.4	704 8	700.1	695.4
MW-10	8005-3710	5/27/2008	2	9.3	9.1	4 B	7113	710.95	-0.3	706 6	706 6	7019
MW-11A	8005-3708	5/28/2008	2	15.0	14.8	48	711.4	710.93	-0.4	701 0	698 5	696.2
MW-11B	8005-3709	5/28/2008	2	8.8	8.5	4.5	711.4	711.01	-03	707.0	704 8	702 5
MW-12A	8005-3706	5/28/2008	2	15.5	15.5	4.5	711.3	710.96	-0.4	700.0	697.6	695.5
MW-12B	8005-3707	5/28/2008	2	9.0	89	4.5	711.3	710.85	-0.5	706.4	704.1	7019
MW-13	8005-3721	6/2/2008	2	12.8	12.5	4.5	705.4	705.18	-0.2	697.2	695.0	692 7
MW-13M	8005-6302	5/5/2009	2	36.0	35 7	10.0	706.3	735 93	-0.4	680 2	675.2	670.2
MW-14	8005-3725	6/2/2008	2	14.5	14.0	9.4	706.4	700 05	-0.4	701.4	696.9	692 0
MW-15	8005-3729	6/2/2008	2	9.0	8.6	45	702 9	702 66	-03	698 6	696.3	694.1
MW-16	8005-3722	6/2/2008	2	14.0	12.7	97	707.4	706 74	-0.6	703.7	698 9	694.0
MW-17	8005-3726	6/2/2008	2	14.5	14.0	9.4	710 3	709 96	-03	705.4	700.7	696 0
MW-18	8005-3730	6/3/2008	2	7.0	66	2.8	711.7	711.13	-0 6	707.3	705.9	704 5
MW-19	8005-3723	6/2/2008	2	90	88	4.8	7106	710.16	-04	706.1	703.9	701 3
MW-20	8005-3727	6/2/2008	2	12.5	11.7	4.8	712.0	711.30	-07	704.4	702.0	6996
MW-21	8005-3724	6/2/2008	2	13.5	13.0	4.8	7093	708.85	-0 4	700.7	698.2	695 9
MW-22	8005-4866	4/15/2009	2	13.0	12.6	5.0	710.4	710.14	-0.4	700.7	700.1	
MW-23	8005-4867	4/15/2009	2	14 0	13 5	5.0	707.6	707.30	-0.3	698.8	696.4	697.6
MW-24	8005-4870	4/15/2009	2	13.0	128	5.0	7059	705.65	-0.3	697.9		693.8
MW-25	8005-8218	1/11/2010	2	12.0	11.5	8.0	711 4	710.93	-0.5	707.4	695 4	692.9
MW-26	8005-8231	1/11/2010	2	13.5	12.8	9.0	711.2	710.93	-0.5	707.4	703 4	699.4
MW-27	8005-8231	1/12/2010	2	14.0	13.7	10.0	711.2	710.87	-0.3		702.6	698.1
MW-28	8005-8216	1/11/2010	2	14.0	13 8	10 0	709.1	708.83		707.2	702 2	697.2
MW-29	8006-6750	6/5/2013	2	11.5	10.5	50	712.2	708.83	-03	705.1	700.1	695.1
MW-30	8006-6751	6/5/2013	2	11.5	10.5	50	710.4		-03	706 4	703 9	701.4
MW-31	8006-6752	6/5/2013	2	12.5	11.5	50	718.0	710.12	-0.3	704.6	702.1	699 6
MW-32	8006-B416	12/10/2013	2	16.0	16.0	10.0	706.5	717.71	-0.3	711.3	708 8	706.3
	2000-De 10	A2 10(2013)	- 4	10.00	10.0	110.04	100.5	706.11	-0.4	700.1	695.1	690.1

Notes

est. = estimated

BMP = below measuring point BGS = below ground surface

ft = feet in = inches MP = measuring point GS = ground/floor surface WLE = water level elevation --- = not available

NAVD = North American Vertical Datum of 1988

KDOW AKGWA # = well number assigned in the Kentucky Division of Water's Assembled Kentucky Groundwater Database Elevations in repinave open remeasured and cranged sinced a Fabruary 18, 2014 vurvey by Eners.

Prepared by SMD 4/15/2014

Cherked by JAM 4/22/2014

Table 2 Well Construction Summary - Remediation Test Wells RBTC LDB #1, Leitchfield, Kentucky

AMEC Project 6251-12-1002

Well ID	KDOW AKGWA#	Completion Date	Inner Casing Diameter (in)	Boring Depth (ft BGS)	Sounded Well Depth (ft BMP)	Length of Perforated Section (ft)	Approximate Ground Surface Elevation (ft NAVD)	Casing Relative to Ground Surface (ft)	Approximate Measuring Point Elevation (ft NAVD)	Approximate Bottom of Well Elevation (ft NAVD)	Approximate Top of Screen Elevation (ft NAVD)
TW-5	8006-2064	3/5/2012	3/4	13.3	12.48	5	711.2	-0.2	711.0	698.5	703.5
TW-6	8006-2065	3/5/2012	3/4	12.0	11.75	5	711.2	-0.3	711.0	699.2	704.2
TW-9	8006-2066	3/5/2012	3/4	11.5	11.30	5	711.2	-0.3	710.9	699.6	704.6
TW-10	8006-2067	3/5/2012	3/4	11.8	11.82	5	711.2	-0.3	710.9	699.1	704.1
TW-11	8006-2068	3/5/2012	3/4	17.1	17.09	5	711.2	-0.3	711.0	693.9	698.9
TW-12	8006-2063	3/5/2012	3/4	15.6	15.70	5	711,2	-0.1	711.1	695.4	700.4
TW-13	8006-2069	3/5/2012	3/4	15.8	15.81	5	711.2	-0.4	710.9	695.0	700.0
TW-14	8006-2070	3/5/2012	3/4	15.8	16.78	5	711.2	-0.2	711.0	694.2	699.2
SW-1	-	10/11/2012	3/4	15.0	13.50	7	711.2	-0.2	711.0	697.5	704.5
SW-2		10/4/2012	3/4	12.6	10.33	5	711.2	-0.3	710.9	700.6	705.6
SW-3	722	10/10/2012	3/4	12.6	10.96	5	711,2	-0.2	711.0	700.0	705.0
SW-4		10/10/2012	3/4	16.0	13.50	8	711.2	-0.4	710.8	697.3	705.3
TW-16	8006-8418	12/10/2013	3/4	16.0	15.09	10	709.4	-0.2	709.2	694.1	704.1
TW-17	8006-8417	12/10/2013	3/4	16.0	15.56	10	709.4	-0.3	709.1	693.6	703.6
TW-18	8002-3162	1/7/2014	3/4	12.0	11.35	5	711.2	-0.2	711.0	699.6	704.6
TW-19	8002-3163	1/7/2014	3/4	12.4	11.74	5	711.2	-0.2	711.0	699.2	704.2

Notes

ft = feet in = inches

MP = measuring point

GS = ground/floor surface

WLE = water level elevation BMP = below measuring point

BGS = below ground surface

NAVD = North American Vertical Datum of 1988

KDOW AKGWA # = well number assigned in the Kentucky Division of Water's Assembled Kentucky Groundwater Database Ground surface elevations were estimated from "Site Survey" drawing, dated May 14, 2009, provided by Endris Engineering.

Ground surface elevations are approximate.

Prepared by: JAM 3/7/2014 Checked by: SMD 4/11/2014

Table 3 Water Level Data Summary RBTC LDB #1, Leitchfield, Kentucky AMEC Project No. 6251-12-1002

Field ID	PW-1	PW-3	Kiper Well	Hack Well	WWTP-A	WWTP-C	Stand-Pipe	MW-1	MW-Z	MW-2M	WW-3	MW-4	MW-5	MW-5M	MW-6	MW-7	MW-8	MW-RM	MW-0	MW-10
Measuring Point Elevation (fl NAVD)	725.58	712.36	713	7.9	710.4	7:03	711.73	723.57	7*0 98	710 93	710.02	709 10	706.78	706.40	703 66	702 54	70871	708.67	7:091	7:0.95
Measuring Point Elevation (R NAVD) Feb 2014 - corrected														100 40	7000		708 68	1.411	7:0.93	
Septh to Water (# BMP)	19.000.00																			
13.07	28.55																			
214.67 222.01		53.27	-				***		- 11			-	122	-				++0		-
11807	2-84	53.21					3.20	1.85	2.98		2.76	4.04	4 42 3 82		312	2 80	4.82			
51358					5 85	5.64	463	4.50	3.51		2.67	4 52	4 37		3 63	287	4 63			
STOCE					5.63	5.7h	3.06	1.55	3.63		2.48	4.44	4.09		3.06	2.71	4.53			
5/21/CA 5/30/CB	6 B				5.86	5.80	3.05	3 G4	3.70		2.58	4.50	4.25		33.	2.95	4.64			
5 X C 8	- 7				5.81	5.87	3.00	3.74	3.03	120	. 61	4.43	350		3.5	1.98	451		5.95	2.15
6.4:08					200		1000		2.97		1.97	4.44				wn	* 31		D 969	2 3
6 S/C8													3.06		3.33	2.23	4:70			
6/6/04 6/9/08	h 5		2					4.36	-	- 1	-				100					2 18
6-3-CH	-																		6.33	
6/11/08					20		-						-						6.77	2.17
6.16/08					- 3			11.61	3.20		2.19	4.48	3.67		3.46	2.40	4.82			
6.19.C8	21.14	55.38			5.84	5.75	3.11	11.72	1.25		2 16	4.54	3.78	2.2	3.55	2.55	4 98		6.39	2.25
3/25/09								5.43	3.28	100	2.15	4.24	3.77	57	3.18	227	4.07		6.23	2.21
3.30/09	-						-	5 09	3.14		2.04	4.65	3.43		2.58	1.59	4 35		5.94	22'
5/18/09							3.06	3.94	2.17	9.93	1.24	4 55	з 22	4.77	2.66	+ 67	4 22	30.57	5.70	1.06
7.109 92409	20.50	53 C2 55 92					3.11	5 64	2.76	B 1 B	1.82	4.50	3 63	6.26	3.38	2.51	4.24	10.85	5.66	5 40
W26.CU # 3C	21.45	23.92			- 50		3.07	7.34	3.09	0.58	2.10	4.52	4.00	7.76	3.43	2.56	4 49	10.61	6.18	7 34 2 25
9/28/09 13:45							1000	8.99	3 08	7.80	2.29	4.51	4.00	7 14	143	2.00	4.42	10.61	6.18	2 32
9/25/09	21.70							7.26	3.29	8.86	2.30	4.61	4 37	7.24						2.34
9/30/09 10/2/09	21.62							7.39	3.41	9.15	2.42	4 65	4 58	7.64						2.40
10,609	21.64							H 01 H 35	3.26	9.29	2.26	4.32	4 55	6.36	1.0					2 27
10/9/09	21.54							0.67	3 64	6.45	+ 97	4.20	4 15	7.07						1.87
10/13/09	21.81	79.31			147		2.96	4.45	3.08	89 8	2.07	4.62	4.23	7.18	2.99	2.88	4.61	10.41	6.23	1 70
10/46/09 10/26/09	21.96 22.58							3 3° 4 95	3.25	9.83	2 23	4 54	4.08	7 19						1.70
10/29/09 10:30	22.91	122						5.00	3.57	9.00	2.53	4.09	4 43	7.36			+1	40		1.95
10/26/09 14:00								5.00	2.54	8.95		A.100	4.00	V. C.						2.00
10/28/09	22.60							2.12	2.44	8.30	2.46	4.52	3.66	6.25						2.5
2/6/12 3/9/12								266	271	7.20	2.76	3.57	3.86	6.81	2.92	2.15	4.65	10.06	6.16	2.86
3812								10.25	2.91	7.27	- 93	3 61	4 93	€ 35	2.70	2.20	4.75	9.50	6.29	1 22
4:90/12																				
5///12				16.17					3700											
5/2/12 6/12/12	22 82	53.84	6.37	11.04				11.92	3.20	8 51 7 - 3	2.45	4.05	4 82	0.86	3.72	3.45	5.11	9.60	6.36	1.36
620.12	22.88	54.04	0.31	11111				11.76	2.80	7.77	2 44	4.07	3 88	5.68 5.77	3.68	2.50	4 92 5 19	9.5"	6.31	1.26
119.12	72 52	53.95						11.79	2.89	7.67	147	4.27	3.96	671	2.97	3.01	5.06	9.21	6.27	170
12/10/12	23.57	58.09	8.03					11.65	1.22	7.06	* 92	2.49	3.65	11.68	1.32	2.05	6.32	9.34	4.96	3.50
1/15/13								10.82	2.71	7.19	158	4.26	3.56	6.78	2.79	2.30	5.00	11.61	5.98	4 94
2/11/13								5.90	7.19	6.46	1.12	4 19	3.21	6.31	+ 83	1.76	5.44	10.76	5.58	4.47
2 12:13	22.92	53.15	9.12					7.27	2.35	6.81	2.12	2.93	3.27		-	4.79	5.44	40.76	E 03	0.08
213/13	00.74									30										0.80
7.16.13.9.50	22.71	53.27	8.99					8.64	7.21	6.83	2:38	2.83	3.23	5.85	2.70	2.92	4.11	12-86	4.565	5.48
15,77,13													7.79				4.45			
12/3/13	20.73	52.03	572					7.27	2.34	6.95	+27	4.25	8.58	9.61	3.56	2.25	9.00	14.18	5.76	* 3*
124.13																			117000	
12/12/13											-									
1.15,14																	5.68			
11614	1.55									775				200			5.54	1000		
1/17/14 24/14									-1							1	-			-22
27.14		- 11	22		-	100			200	***				-		-	1			277
4.25/14	2103	47.74	5.5					0.34	3.91	9.01	251	3.36	4.15	702	+ 79	203	3.86	10.04	510	1.12
6-6-4					-	-		2.38	4.12	961	301	4.56	6.26	6.32	3.11	2.80	9.41	9.57	532	1.35
1- Zi 14	71 47	47.94	6.25	-	-		-	700				-		2	200	- 123		-		

DTW - Dept is Water
M.E. - Water could be could be some of the could be

Table 3 Water Level Data Summary RBTC LDB #1, Leitchfield, Kentucky AMEC Project No. 6251-12-1002

Field	ID MW-11A	MW-11B	MW-12A	MW-128	MW-13	MW-13M	MW-14	MW-15	MW-16	MW-17	MW-18	MW-10	MW-20	MW-21	MW-22	MW-23	MW-24	MW-25	MW-26	MW-
Measuring Point Elevation († NA)	7:087	710.67	710 89	716.76	705.19	705.91	706.25	702.66	706.74	709-541	741.44	712.16	711 K	TOR AN	710.14	22700	1000	5276374	30111111111111111111111111111111111111	200
Measuring Point Elevation (ft NAV Feb 2014 - correct	7:097	711.01	710.96	710.85	705 'H		706 05	1112		104.96	J. 1966	() E (0)	1.00	Ton Mi	710.4	707.32	700 6%	710.93	710.87	710
Depth to Water (# BMP)	HO		3971025	91/1925			0.5000									310,324				
1307	1																			
V14G7	1																			
922/07	551																			
11807																				
r13/68	1																			
- DICA																				
21/08	0																			
30/08 (30/08	3.57	3.61	3.63	4 33																
408	3.34	3.48	3.53	4 07																
/908					2.95		2.90	3 08	2.94	13.23	5.85	8.62	4.43	11.92						
evos.	1.58	3.746	3.61	4.19																
908	1 5			7.5	257		1.78	2.82	2.78	0.27	2.61	000.000		1000000000						
1008			3.89	4.19	757.0		110		6336	3.00	2.61	8.40	2.67	8.21						
11/08	10									4.80	2.4"	6.25	2.68	4107						
16/08	100000									3270	900									
18/08	1.71	3.50	3.545	4.17	3.07		3.30	2.00	2.89	101	2.40	8.16	2.88	7.24						
2509	3.66	2.66	4 0.6	4 10	3.14		3.37	2.06	2 94	2.91	2.35	8.01	2:97	6.69						
30.09	158	3.77	3.6"	4.24	3.01		2.24	2.04	2 04	2.32	2.06	* **	2.72	2.81						
18/09	3.10	3.22	3.77	4.25 3.95	2.55	561	262	0.71	2.16	2.48	2.06	* 02	2.60	271						
109	5.26	2 00	3.53	3.65	2.52	€ 11	2.74	2.73	2.28	2.44	1.88	0.40	56	2 = 0	4.73	2.04	2.47			
24.09	Stadion.				107-1107		0.00	5000	0.500		1.71	1.24	2.46	2 04	331	2.27	1.91			
28/09/8-30	3.75	3.68	4.17	4.47	2.96	6.25	27.	2.77	2.41	251	2.16	0.40	277	2.39	3.67	2 (40)	127			
78/09 13 45 19/09	3.77	3.7	4.18	4.47						2.51	2.31	0.40	2.06	£ 38	176	5 447	21			
10.03	3.94	3.81	4.31	4 1-4						2.55	2.27	0.63	3.02		1.07					
209	4.03	3.85	4.40	4.57						2.50	2.31	0.61	3.08		3.97					
6.09	3.92	3.76	4.31	4.49						2.10	2.25	0.43	3.07		3.86					
parca	3.65	3.75	4.02	4.47						1.95	2.16	C 56.	2 684		3.87					
U1909	3.65	3.90	3.99	4.52	3.04	6.14	2.93	* 83	221	2.28	1.00	0.60	2.72	-	1.58					
16/29	3.54	3.80	3.82	4.45				26.5		2.51	1.56	9.70	2.46	2 61	141	2.00	1.21			
2009) 77	3.84	4.01	4.49						7.53	1.54	0.86	2.39		3.35					
726/09 10 30 126/09 14 00	3.76	3.92	3 99	4.51						2.53	1.89	101	2.45		2.33					
28/09	3.65	3.86	3.67	0.00							2.10									
612	3.22	3.52	365	4 31	2.52	5.67	2.67	350		2.48	2.11	1.64	2.63		3.19					
912	1.49	2 63	4.82	4 35	252	6.07	2.90	0.66	2 '6	2 40	0.92	41	2.31	3 07	27+	2.62	1.70	3.64	3.72	5.65
V12	-	3.74				0.67	2.90	144	2.73	2.50	1 15	2.38	1.3	H 5.2	163	2.7G	0.99	3.13	3.7	5.7
10/12														7.25	1.44					
/12	2,665													7.49	1.44					
0.12	2.81	5.42	4.19	4.35	2.99	7.32	3.33	3.35	2.56	3.51	1.46	4.64	207	5.62	3.56	2.02	1.01	3.90	3.60	57.
2/12 5/12	3 44	3.16	3.85	3.89	2.98	6.71	3.26	2.99	2.61	2.51	1.22	0.81	- 76	3.01	3.25	24-	1.17	2.37	3.48	5.3
5/12	4.24	3.76	469 392	3.81	3.01	7 27 7 19	1.26	1.18	2.83	2.78	1.41	1.7	96	3.22	3.41	2.78	1.19	3.19	3.61	5.58
1012	3.61	3.43	3.04	3.01	2.48	7 19 6 57	3.30	3.27	2 1.7	2.71	C 97	1.06	2 . 7	2.97	3.17	271	1.01	2.51	3.96	5.0
15	2.31	331	3.82	3.86	2.34	6.56	3.34	0.0	2.98 2.40	1.89	0.49	0.65	2.74	9.01	4.29	2.72	1.64	2 9C	3.46	4.74
5/13	100				3.23	47.361	100	39	2.40	2.25	1.04	3.20	210	9.42	5.76	2.75	1.31	2.69	3.6	5.41
1/13	2.78	2.74	3.38	3.52	1.57	5.91	7.96	1.04	1.55	201	0.89	2.44	47	5.89	2.54	2.18	0.06	2.10	97.00	2.20
2/13	3.92	3.90	3 96	4.25				2.29		190	0.60	321	0.000.0	F 42	7.54	4 10	OU TWO	2.10	2.54	4.75
3/13 7/13																		2 87	0.06	4.7
643 9 50	2.39	2.39	307	3.30	6.50	6.61	3/34	2.41	2 6.1	2.5€	1.76	0.28	4"	4.36	7.72	* 77	0.78	* 90	2.67	4.45
7-13														2.73	5.64					
3/17	2.88	2.87	3.46	3.54	4.43	F 240	10000			107				9.80	3.33	2.12				
612	7.70	2.41	70		443	5.99	3.34	2 16	2.33	3.07	0.69		+ 5 *	2 50	6.4	2.31	0.98	2.26	2.38	4 66
1143																				
13/13																				
5/14																				
114	175		8															111		
4	7.68	-		-			30"			5777-4	570		701	200						
14	2 68 2 69	276														+4		2.25		
1.4	3.08	2.84	3.47	3.79	5.54	e c7	24"	35"	* D/K	2.47								2.25		
174	3.34	3.16	3.46	3.76	3.80	e 07 e 42	307	4.	2.44	2.17	0.70	4 30	+ 5-	9.44	216	197	0.80	2.14	3.14	4.06
7.14					1500	0.42	June -	-	44	2 34	0.34	177	* 71	0.43	2.38	2.0#	- 53	248	3.38	4 34
								Serie .								-				-

Table 3 Water Level Data Summary RBTC LDB #1, Leitchfield, Kentucky AMEC Project No. 6251-12-1002

																		-			
Field ID	MW-28	MW-29	MW-30	MW-31	MW-32	TW-5	TW-6	TW-9	TW-10	TW-11	TW-12	TW-13	TW-14	TW-16	TW-17	TW-18	TW-19	SW-1	SW-2	5W-3	SW-4
Measuring Point Elevation (1t NAVD)	708 83	711.80	710 12	71771	206.11	7110	711.0	710.9	710.9	711.0	7111	7*0.9	711.0	709 17	709 17	710.97	71095	7110	710.9	711 G	710
Measuring Point Elevation (ft NAVD) Feb 2014 - corrected					70611									709 17	709.12	710.97	710.95				
pth to Water (*1 BMP) 3-07	3				-								122		440	22			8		
4.07													111			677				1	
2/07																- 55			=	- 7	- 3
6.07																22			-	-	
3/G8	\$ 5 5																				
9/08																			277		0.77
C/CR	120						20				325							-		***	
ica																		-			
₽CA														-			100	-	100	100	
vC8															-				-		
568	1000				120										100						
406																				223	
10:08 11:68														-				-		-	
11:58	100				-									5.000	- 11th	377		3771	277.0	- 0777	-
th-06															-	-				1	
19:08					-	-	-									++=	- 33			-	
25-09																****			-		- 2
30/09	1													52	922				-		
16/09	-			-	-									1000			10				
1/09							1550										23			444	
24:09 28:09:8:30	100		- 5													1100					
28/09/6/30														-		-			177	1,777	
29/09	100				-									-			140	-		***	
30.09	1																	37	-		
2709	1 1 1																***				
(4)09														(1)							
0.5/09	1													- 1							
0.13/09												33		200							
01609														444	and the same of				100	17.44	
226/09 10:30	- 22													-				1.00	1000	1,775	
326/09/14/00	1															S-6	-	-	-	100	
0.28/09	1				1940						3			*		-	-	-			
6.17	4.57	0.00															44-1				
512	4.50					10.89	285	DRY	5.92	5.26	3.78	DRY	5.45			57.75			- 22	100	
1812						10.09	5.60	DELT	3.94	3.20	0.10	Der 1								***	
30.12 1112	1				221				100							-	-	200			
2.12	4.96					5 37	1.00	3.03	3.54	4.19	4.23	5.28	6.67		22	7/2025					
12.72	4.94					1.90	2.67	2.66	3.14	3.81	3.89	5 04	5.47	210	77.5					200	
V2C-12	4.98					25	3.21	3.30	3.74	4.46	4.91	5.37	6.68	***				-			
159/12	4.47					2 05	2.56	3.07	3.42	4.06	3.95	4.41	4.78	200		-		3.77	3.19	3.01	3
2:10/12	3.58					3.73	2.99	3.05	3.74	3.70	382	4.82	4.87 5.32	77	- 25	-	77	344	3.73	- 50	
(7.1.)	5 *9					2.58	2.70	2.74	345	3.29	182	4.10	3.34	0.57	70					-	
(15)13 (45)13	4 17					1.90	2 17	2 22	2.67	2.92	37.46	4.53	4.89					-		- 2	
23273	1.04					5.1.000					1000										
116-7	9							2.2			3.26	4.50	4.61								
(17:13	4.50	DRY	4.27	DRY		158	201	2.00	2.46	2.64	3.18	4 17	4.45								
16-13 9/5C	1	7 84	1.62	DRY																	
677.1	A column								1021		10,00	0.00	4.60					10.00	291	2.31	
23/1	5.15	6.22	1.17	9.5		3.00	2 44	2 32	270	200	26.	4.42	4.90					3.23	1290	2.45	8 1
24-11	a . 8									2.94				3.73	342						
2+11/13 2+13+3	4.0				3.04									8.05	7.5						
15.4	8 19 8				0.00									3.54	3.52						
16.14														3.45	2.83						
17.14					2.64	-	0.55					2553	9.770	1		7.18	9.25				
45.14	1				2000000	- 44	7.43		2 66		-	4.28	***		140				111	250	
7.14				-	- 2	02/2	2.45		2.81	- 3	444	-	100	111		111	211		- 6		
1.79.14	4.45	3.58	126	0.00		3.21	2 42	2.19		1.19	3.54	407	4.18	4.04	3.11	2.68 2.90	2.10		2.67	260	
5 19-14	5.07	3.51	2.30	0.67		2.48	2.89	2.86		1.38	3.65	4.5"	4.47	374	144						
5 19-14	5-07	7.51	- 1	0.67		248	2754	-	447		A 100	• • •	4.4	-		-	2.10				

ETW - Depth to Water
Aff - Water I new Florescor
- No Data Alexande
NAVD - Noth American Votes a Description R

Table 3 Water Level Data Summary RBTC LDB #1, Leitchfield, Kentucky AMEC Project No. 6251-12-1002

							AMEC PI	nject No	0.023 1-12	1002	-									
Field ID	PW-1	PW-2	Kiper Well	Hack Well	WWTP-A	WWTP-C	Stand-Pipe	MW-1	MW-2	MW-2M	MW-3	MW-4	MW-5	MW-5M	MW-4	MW-7	MW-4	MW-6M	MW-9	MW-1
Measuring Point Elevation (* NAVD	725.58	7:236	753	7.16	710.4	710.7	711.73	72351	710.98	710 83	715.02	709.10	706.78	75H 40	703.66	702.54	708.71	768.87	710.91	710.95
Measuring Point Elevation (ft NAVD) Feb 2014 - corrected																	708 68		71093	
Nater Level Elevation R NAVDI																		= 15		- OTT
1.107	F97.03																			
3/14/07	200740000	659.09																		
3/22/07								721 66	707.26		707.26	705.15	702.30		700.92	599.74	703.89			
418C7 513C8	70183	659 15			12570	327775	708.53	71#.20	TOR OC		TORICH.	705.08	702.96		700.54	700.91	763.81			
2.8C8	12.				704.55 704.57	704 48 704 52	707 10 708 67	719 Q1 719 96	707 15		707.35	704 58 704 66	702.41		700.61 700.60	699 67 699 81	704 06 704 16			
5/21/08					714.54	704.50	7LB 68	719.57	707 28		707.44	704-60	702.50		700 35	#99.59	704 07			
socia																			704.75	71,7 45
5308 5408					754.59	704.47	706 67	719 77	707.95		708 11	704.67	703.27		700 51	700.56	764.20		704 96	706.80
5-4-08 5-5-08	1.00								708.01		708 C5	704 66	****			-		- 27	-	-
5608				- 83				719 13					703 *2		700 33	700 31	704 01			708 77
suce								1000												
STOCE																			704.58	708.78
91109 91609							100		-			-	-		0212-220	-	4.75			
5 '8/C8	754.44	656.98			754.56	704 55	708.62	71190	707.78		707 BD 707 BB	704 62 704 56	763 *** 763 00		700.25	700 E3	703.73		704.52	708.70
N19/08							11.01	nivino:			111.00		The sale			164-1-5	CONTR		A. 14	TIME TO
125/09								717.11	707.70		707.87	704 MI	703.01		700.48	700.27	704/04		704.66	708.74
93009 91809								718.42	707.64		707.98	704.45	703.36		701 CB	700.95	704.36		704 97	708.74
11/09	705 G#	659.34					708 67 708 62	719.57	708-81 708-22	704 00 702 75	708 78 708 20	704 55 704 60	703.56 703.15	701 83	701.00 700.28	700 87 700 63	704.47	678 30 698 CZ	705.21 705.25	709 90 708 85
924/09	703 65	656 44					1186.62	716 17	707.51	701.35	109.22	7(44.68)	A274 - P	700 14	700 2W	700.6.1	104.4	enad C2	71.5 25	708.61
F25 C9 B 30	704.13						708.66	716.60	707 8W	703.08	707.92	704.58	702.78	608 85	700.21	899 98	704.22	198.2E	704.73	708.70
x28-C9 13-45								716.52	707.90	703 07	707.93	754 59	702.78	699.26						708.63
k29/09 k30/00	703 84 703 7W							716.25	707.69	702.07	707.72	754.49	702.41	65/9 16						708 61
E-2/09	704.06							716.12 715.50	707.57	701.76	707.60 707.76	754.45 754.78	702.20 702.23	608.76 608.18						70# 55
0.45.09	703.94						100	715.16	707.62	701.42	707.71	704.75	702.13	700.04						708.68 708.71
0/6/09	704.04							722.64	707.94	702 48	708.05	704.90	702 63	669.33						709.08
0.43/09	70377	633.05					708.77	719.06	707.90	T02 04	707.95	754.48	702.45	669.22	700.67	699.66	704.10	698.46	704 68	709 16
0/16/09	703 62 703 00							720.20 716.56	707 73	701.7%	707.79	704.56	702.70	f69.21						709.25
5/96/09 10:90	702 67							718.51	707.41	70' 93	707.49	704.41 704.40	702.36 702.73	699 05 699 37						709.00 708.95
3/26/09 14 00								71831	707.44	701 90	100.47	34.40	122.73	1000 57						708.78
0/28/09	702 78							720.39	207.54	702.63	707.56	704.58	703 17	700.75						708.80
612								720.85	708.27	703.73	707.25	705 53	702.97	100 50	700.74	700 39	704.05	698.70	704.75	708 10
10:12								713.26	708.07	703.66	708.00	705 49	701.85	700 65	700 96	700 34	703.96	699.28	704.62	709 73
00/12																				
V1-12				751.83																
2.12								71159	767 69	702.42	707.57	705.05	702 16	109.54	100 94	600.09	703.60	699.27	704.55	709.60
/12/12 (30/12	702 TH 702 TG	658 52 658 32	706.63	706.96				712 63	708 16	703.80	708 17	705.05	702.90	609.72	700.01	609.95	103 70	699 W	704.79	709 69
15/12	702.96	656.41						711.75	707 77 708 09	703.16 703.26	707.58	704 89 704 85	702.45 702.82	699 63 699 69	899 SH 700 69	#99-38 #99-53	703.63	699.66	754.60 754.64	709 25 708 78
2 10 12	702.51	664.27	704.97					711.86	707 76	703.87	708 10	706 61	703 13	699 69 699 72	702 34	700.49	703 80	699.00 699.52	705.96	707.36
7.13								712 09	708.27	703.74	708 44	704 84	703.20	609 62	700 97	700.74	763.7	1997.26	704 93	706.01
75/13												704.91				700 GR				706 46
12/15	702 66	659.21	703.90					717.85	708.79	764.47	70e 90	706.10	703.57	700 09	70+78	700.78	751.27	498 1"	705 33	709.97
13-13	102.00	0.79 2	7 11 3 15 1					716.24	708.63	764.12	707.90	706 17	703.57			700.75	701.27		704.88	710 15
-7.13	702.87	659 09	704.01					754 87	706.77	704.10	707.64	706.27	703.50	700.55	700.96	600 62	204 60	696.01	705.93	705.47
16/13/9.50 57/43																				
27/43	204.05	660.33	707.30					571		- 55	-	19	702.99				704-25			
24:11	754 86	660.33	707.30					716.24	708 94	70.1 66	TOP TO	704 B5	658.2C	696.59	700.48	TDC 294	699.71	694 69	715 15	729.64
211013																				
2/13/12																				
15/14																	702.83			
17/14																	703.17			
514																				144
7:14																				
29/14	702.56	664.62	707.49					723.17	707.07	701.02	707.55	705.74	70263	189 76	701.87	700.51	754 82	698.83	705.83	709 83
19/14	***							721.13	706.86	701.30	707.51	754.54	700 52	700 08	700.55	699.74	499.27	699.30	705.61	709 60
22:14	704.11	664.42	706.75																	

DEW Coptilis Water
WEE Water Level Flovation
No Data Available
NAVO - North American Vertical Call (#10) MAX

Table 3
Water Level Data Summary
RBTC LDB #1, Leitchfield, Kentucky
AMEC Project No. 6251-12-1002

Field ID	MW-11A	MW-11B	MW-12A	MW-12B	MW-13	MW-13M	MW-14	MW-15	MW-16	MW-17	50W-18	MW-19	MW-20	MW-21	MW-22	MW-23	MW-24	MW-25	MW-26	MW-Z
															25/49/005					
Measuring Point Elevation (# NAVD)	7:087	71087	710.89	710.76	205.19	705.93	708.25	70.2 en	706.74	709.96	711.13	7-6 46	711.30	708.86	710.14	707.32	705.65	710.93	710.87	7101
Measuring Point Elevation (ft NAVD) Feb 2014 - corrected	710.97	71101	710.98	710.85	705 18		706.05							708 88		707.30				
ater Level Elevation																				
NAVD)	8																			
13/07																				
14.07						-														
22.07	100	-	-	-	***															
	E =						1													
×12/08	(i) = 1								341											
x1908 x2168	0.0						100		- 20									100		
x30 CB	707.30	707.00	707.06	706.43																
VVCA	707.53	707.39	707.36	706.69																
5.4°CH	100			7 50 10	702.24		703.29	690 58	703.80	606.73	705.28	701 64	70€ 87	69€ 94						
P508	Constant of																			
56C8	707-29	707.51	707.08	706.57																
PIPOR	1100000000	1000	William Co.		702.22		702.97	199/84	701.96	703.69	708.32	701.70	708 63	700 65						
S TORR	0		707.00	706.58																
51108	13									705 10	708.72	7C- D1	708.62	697.79						
P. 2008	ii see																			
N-TRICE	707 16	70737	716.91	706 59	702 12		20295	899.76	703.85	706.95	706.73	702.00	708.42	701.62						
5 twcs	144	100	706.81	708 57	702.05	- 22	702.88	699.70	703 80	707.05	708 60	702 16	705.33	702.23						
¥25/G9	707.21	707.21	706.96	706.52	702 18		704.01	700 62	704.70	707.64	709.07	709.05	708.58	706.05						
5/30/CV	707.20	707 10	707.12	708.51	702 64		703.63	701.90	704.59	707 48	709.07	709 14	708.65	706.15						
S18CH	727.77	707 66	707.50	706.51	702.87	700.32	763.64	701.18	704.46	707.52	709.25	709.76	709.75	706.17	705.41	705.28	702.18			
711/09	707.59	707.88	707.36	706.86	702.67	099.62	703.5*	699.90	704.19	707.46	709.66	708 92	708.84	T06 82	707.21	705.05	703.74			
9/24/09 -	Lancas										709.42									
9/25/09/8/30	707.09	707.19	706.72	708-29	702 33	699 68	70154	694 89	734 33	707.45	708.97	709.75	708 53	706.47	706.47	704.72	704.38			
9/28/09 13 45	707 10	707.16	706.71	706.29						727.45	708.82	709.75	708.34		706.38					
929C9	706.93	707 06	706,68	706.22						707.41	708.86	709 57	708.26		706.27					
9/30/09	706.84	707.02	706.49	756.19						707.37	TG8 82	709.65	708.22		70617					
10/2/09	707.01	707.20	706 63	706.31						707.57	708 88	709.73	708.23		706.28					
10/6/09	706.96	707 **	706.56	706.27						708.01	708 97	709.60	708.31		706 27					
10/9/09	707.22	707.12	706.87	706.29						707 68	709.35	709 6E	708.57		706.56					
10/13/09	707.22	708.97	706.90	706.24	702 15	699.79	763.42	T00 81	704.53	707.45	709.53	709.49	708.62	706.25	706.73	704.63	704.44			
10/16/09	707.33	707.07	707.07	706 31	-	140	0.00		-	707.45	709.57	709.46	T08 95		706.96					
10/20/09	707:10	706.99	706.88	706.27						707.43	709.29	709.30	708 91		736 79					
10/26/09 10 3/0	707 11	T06.95	706 50	706.25						707.43	709 24	709 15	708 AS		736.81		100			
10/2/5/09:14:00	E	400	1000								709.03									
10/28/09	707.22	707.01	707.02	706.29	407	120000	4361000	0285 (950	250	707.48	709 CZ	709 12	708.67	astilon.	706.95			- CO 03. O. V		
2.6/12	707.65	707.36	71.7.24	706.45	702.67	700.06	703.38	701.MB	704.56	707.56	710.21	708 75	708 99	705.79	707.43	704.70	704.26	707.89	707 15	705
3/5/12	707.38	707.24	706 07	756.41	702.67	559.86	703.35	701.22	704.61	707.46	709 98	704.78	709.57	720 34	707 -1	704 62	704.66	707.80	707.16	705
3/8/12	100													201.01	2000 200					
4/30/12 N1/12	F													701.61	706.70					
5/2/12 5/2/12	707 DE	707.45	706 70	706.41	702.20	698.67	702 90	699.31	754.18	706.45	709 67	705.52	714-21	703.24	706 58	704.50	704.64	707.01	707.01	705
6/12/12 6/12/12	707.43	707.72	7UT 04	716.87	702.21	059.22	702.99	699.31 699.67	754 13	707.45	709.91	709 52 709 35	709-21	705.85	706.58 706.69	704.50	704.54	707.01	707.01	705
8/20/12	709.63	707	706.20	706.03	702.18	696.66	702.99	699.61 699.46	70411	797 18	709.72	708.96	709.34			704.71	704.54			
11/6/12	707.96	708.02	706.97	706 95	702.18	698.74	702.86	699.39	704 17	707.25	710.16	709.10	709 13	705 64 705 89	706 73 706 97	704 59	704.62	707.74	707.26	705
12/10/12	707.26	707.44	706 9h	706.65	702.71	699.36	703.94	702.56	706.76	708.07	710 64	709.51	708 56	698.95	706 97	704 60	704 62	708 42 708 G3	705.91	705 706
17/13	707.56	707.66	71.7 07	706.90	701.65	699.37	702.91	700.67	704.34	707.71	710.09	700.96	709.20	698 95 699 44	704 C2	704.57	704 14	708 24	707.08	701
11541	1	9. 17.33			701.96	1000				1000			1000		704 38	100	154	100 /4	101.00	193
2/11/69	708.09	70813	707.51	707.24	703.62	700.02	703.29	701.62	705 09	707.95	710.24	707.72	709.83	70337	707.60	705 14	704.99	708.83	708.03	706
2 12 13	706.95	707.27	706.93	706 51	and the			700.37		708.06	710.53	706.95	100.00	700.44	707 ec	1007	104.95	1 un d.1	1981943	7.68
2(13/13)	1 45													100.44		3.00		708.06	707.79	706
6 17/12	758.48	708.48	707.82	757.46	(548 KG	099.32	702.91	700.25	704.13	707.80	709.37	70/88	709.89	699.50	707.42	705.55	704.87	709.03	708 20	706
7/16/12/9/90	1000		191193	1000000	1000	B0800	955550	STATE OF THE PARTY		10000	5655	100000	p-025/2/672)	706.13	704.30	8702507			100 80	×
10/7/19	1 '				702.28					706.93				699.06	706.81	705.20				
12:3/13	707.94	708.00	707-41	707.22	700.76	699.94	TG2 91	700.50	704.41	706.69	710 44		709.79	706.26	703.73	705.01	704 69	718 67	718 49	706
12-4:13	1													200		0.53	250	033955	(S) (T) (S)	0.00
12.11/13	1																			
12/15/13	1 -																			
1/15/14	1 = 1																			
1/16/14																		709.82		
57744	London						703.24							2000						
2.6/14	708.29	708.36																708.73		
2/7/14	708.28	708.31																708.72		
4/29/14	707.89	7ca - 7	707.49	707.06	600 54	699.86	703.64	707 15	704.76	707.79	710.45	705 86	709 79	69944	707.58	706.33	704.65	708.79	707.73	700
5/19/14	707 63	707.80	707.50	707:09	701.38	699.51	702.98	701.05	704.30	707.62	710.79	706.39	709.80	698.45	707.76	705.22	704.62	708.25	707.49	
5/22/14	1																11.00	District Co.	7/4/250-5.01	100000

CTM - Degree Waley AT E - Waler Leve E evalue -- No Data Ava Role NAVII - North American Vertical Data more Units

Table 3 Water Level Data Summary RBTC LDB #1, Leitchfield, Kentucky AMEC Project No. 6251-12-1002

								AMEC	Project No	n, 6251-12	1002										
Field ID	MW-28	MW-29	MW-30	MW-31	WW-32	TW-5	TW-fi	TW-8	TW-10	TW-11	TW-12	TW-13	TW-14	TW-16	TW-17	TW-18	TW-19	5W-1	2M-3	5W-3	SW-4
Mussuring Point Elevation (# NAVD)	708.83	711 80	710.12	7177	706.11	711.0	711.0	7-09	710 8	711.0	711.1	710 9	7110	709 17	70012	71097				40000000	
Measuring Point Elevation (6 NAVD)					706.11		S. C. Salaria		7. 11. 11.	611.90	1880.5	7770-96	2012.00	709.17	709 2	710 97	710.95 710.95	700	210.9	70'0	710.8
Feb 2014 - corrected Water Level Elevation																	118 11 118 11				
n NAVD)																					
V13/07																					
V14-C7	020																				
1/22:07 L18:07	327	-																			
51708																					
5/19/08																					
5/21/08				100																	
V3C/08				1-																	
V308 9408																					
5508																					
WECH .																					
9908																					
5/10/G8																					
V11/08																					
\$ 16/C8																					
918/08 919/08																					
125/09																					
130/09																					
V18/09																					
7169					2																
k24:09																					
¥28/09 6 30																					
×28/09 13 45																					
k29/09 k36/09																					
0.2/09																					
0%/09																					
09/09																					
0/13/09																					
0.16/09																					
5/20/09 5/26/09 10:30																					
0/26/09 14:00																					
128-09																					
5/2	704.26		3223																		
5/12	704.25																				
612						700.09	708 10		704.07	725.69	707.30		705.96								
96/12 1/12																					
2:12	703.87					705.61	11500000		2223	2000											
12/12	703.89					709 G6	707.95 708.26	707.65 708.23	707.30 707.75	706.76	706.86	705.57	704 14 705 54								
2012	703.85					706 47	707.74	707.58	707.15	706.49	706 17	705 81 705 46	705 54								
15912	704.36					708.93	706.39	707.81	707.47	706 69	707 13	706.44	706.23					707.21	707.71	707.94	-
2.10/12	705.25					707.25	707.96	707.83	707.15	707.25	107.05	706.63	706.14							107.94	707.95
7/11	70364					7C8 6G	708.25	108 14	707.41	707.56	707.28	100.00	705 499								
11/13	704 €€					20,000	NAMES OF THE PARTY	020000011	www.												
12/13	ACM DE					709 GR	708.78	738.66	208.22	204 G3	707 FIZ	706.32	706 12								
13/13								706 67			707.82	706.35	704.20								
17(1)	703.93		705.65			709.40	708.94	708 se	708.43	708.31	707.90	706.68	706 56								
16/13 9 50		764.05	706.30					110000000													
17.13																				708.69	708.41
93+3	70.168	705-87	708.99	708.56		7C8 98	708.51	708.58	708.19		707 47	704.42	706.11					707.77	707.90	708 56	708-06
211113										T08.51										34-	
213/13					703.07									705.44	705.70						
15/14					- rua qv									705.63	70.00						
16.14	10													705.63 705.72	705.60 706.29						
17/14					703 17									(147.04	(141.04)	707.78	701.70				
014							708.52		708 23			706:59				T. Cond	70.70				
7.14	-			-			708 50		70A 08												- 0.1
	704.58	708.33	706.86	7177		707.77	708.53	708.49	707.73	707.74	767 54	705.76	706.83	705 1 h	70#.C1	708 29	709 13			758.54	708.53
22.14	703.76	706.16	706.82	717.04		708.50	706 ON	TOB.02	707.46	707.57	707.23	709 54	706.54	705.38	705.66	708 O.F.	7G8 R5	707.66	708.23	70813	708 10
707																					

C.T.W. Depth to Walter
W.F.: Walter (ever Flevalion
NO Data Avairable
NAVD - Natth American Vertical Data of 1466

Table 4
Groundwater Field Parameter Data - 2012-2014
RBTC LDB#1. Leitchfield. Kerducky
AMEC Project No. 6251-12-1002

fell No.	Date	Time	Depth to Water	Water Level Drawdown	Purge Rate*	Specific Capacity	Tempera ture	Specific Conductance (SC) (uSioni)	рН (\$17)	Dissolved Oxygen (DO)	Oxidation- Reduction Potential (ORP)	Turbidity (N717)	Sample Time	Notes
174.1	2.7/2012	9.15	H	-			9.61	240	7.06	4.46	244.9	>1100		Well purged dry. Purgal water appeared to be rurbid with no odor
W-1	6/12/2012	1103	-	- 2		- 2	2164	397	5.88	-	1058	>1100	15 30	Well purged dry, Purge water appeared to be furbed with no odor
W 1	12/13/2012	1157	16.85	5.20	100	0.005	14.75	310	5.97	1.14	30.9	259		Well purged day. Purge water appeared to be very further, brownish gray, with no odor.
W 1	2.12/2013	11.20	16.04	10.18	110	0.003	12.38	502	6.11	2.27	167.3	639	11.25	Furbidity community or increase as the water draws down.
W 1	6-17/2013	16.47	*1.72	5.06	100	0.005	14.55	309	5.40	1.77	91.8	44.6	16.50	Well purged thy. Water was turbid, gray no odcy.
V2 1	5/19/2014	12.06	6.83	4.42	100	0.006	12.57	319	6.55	0.59	39.7	16.3	12.08	
W 2	2/7/2/112	10.41	1.04	0.33	210	0.158	14.72	555	7.15	0.12	321.0	19	10:50	Water appeared to be clear, no odor. Pump intake depth at 13.5 feet BGS.
WZ	6.12/2012	13.45	291	D.11	130	03.5	18.32	742	6.71	0.32	14.5	2.18	13.50	Water appeared to be clear, no odor. Pump intake depth is 13 feet BGS.
W 2	12/13/2012	1104	3.26	0.04	213	1 387	15.41	729	7.11	0.23	62 1	2.86	11 05	Water appeared to be clear, no odor: Pump intake depth at 13 feet BCS.
W 2	2/12/2013	11.05	2.35	0.16	200	0.330	14.21	77H	7 OE	0.24	277.6	2.04	11.10	
N/ 2	E-18/2013	9.57	2.25	11.14	160	0.302	16.32	876	6.90	0.42	- 26.6	1 24	10 OC.	Water was clear, no odor. Hump interest apriox 15 feet.
NV 2	5/19/2014	16 16	4.33	0.27	250	0.245	14.60	879	5.26	0.35	69.7	3.20	16:18	
										10000	12/12/23	165	20000	The second secon
19-58	2/7/2012	12:15	8.05	0.65	200	0.062	16.10	729	7.80	0.21	307.5	7.7	12 (0)	Water appeared to be sured, no odor. Observed white particles in flow through delt. Pump imake depth at 35 feet BGS Water appeared to be clear, no odor. Pump intake depth at 36 feet BGS.
W ZM	6/15/2012	9.05	7.76	0.63	120	0.050	1801	945	7.03	0.18	16.0	1.75	9.15	
77 7M	12/13/2012	9.21	9.08	2.02	200	0.026	15 33	809	7.25	0.39	32.2	167	9.25	Water appeared to be clear, no odur, Pump intake depth at 34 feet BGS.
W 2M	2 12/2013	12.40	41.82	D 361	200	0 147	15.77	8.77	7.17	0.32	3783	2.13		Pump intake at approx. 37 feet. Water was dear, no odon
for 254	6/18/2013	10.43	7.02	101	200 250	0.165	19 62	55V 958	9.38 6.16	6 06 C 38	18.2 50.7	4.44 0.87	10 46	Elich triwe is obtain 10, sec man was near in the
PW 2NI	515/2014	15.42	0.07	1000	04.905%	or seed.		3946						
tiv t	2.9/2012	8.50				-	4.96	461	7.21	6.82	289.2	330	8.55	Water level stabilized around 5 to 7 feet BMP during burging. Turbid, no odor
two.	6/13/2012	12.70	20			100	24.49	H70	7.16	243	-17.7	>1100	15 05	Water level stabilized amound 5 feet BMP ouring purging. Turbid, no odor
W 3	12/13/2012	9.27	7.60	5.68	1104	0.055	11.90	1.520	6.29				933	3DMe in purge water, Purge water appeared to be turbid, white to light gray, 3DMe odor
W.T	2.12/2013	941	3.65	2.73	230	0.022	11.63	1 310	6.25	0.49	45.4	181	9.45	30Me odor in purge water, uarge whole particles suspended in purge water.
W-1	6/18/2013	15:00	2.93	2 00	130	0017	21:09	1246	B.35				15.01	
1. 10	2/13/2014	13.25	123				7.4	1210	6.38					Water slightly cloudy, whire, 3DMe odor
MACA.	2:25/2014	13.56				-	12	1050	6.2	375.1				3DMe present in purpe water
5A 3	5/19/2014	12.38	3.93	1.07	100	0.325	76,11	1027	683	0.30	-100 5	317	12.40	
10/4	2/9/2012	10.05				127	9.17	450	7.32	6.41	775.5	91100	14.45	Well purged dry. Purge water appeared to be further with no notice
NV 4	6/13/2012	11.45				755T0-	25.64	721	6.84	2.03	53.1	>1100	15:15	Well purged dry. Purge water appeared to be furbid with no ndor.
NV 4	12/13/2012	11.25	10.06	7.57	1540	0.057	120	1.610	5.95	-			11 30	30Me in purge water. Purge water appeared to be suited, while to light gray, 30Me odor
divi 4	17/2013	15.43	5.57	1.36	200	0.039	11.9	1.370	6.7				No Sample	30Me in purge water. Purge water appeared to be slightly furnic. Light gray, 30Me rictor
TVL 4	2:12/2013	12.20	5.66	2.66	120	0.012	12.6	1 260	5.71				12.22	3DMe odar, Skightly cloudy.
#V/ 4	6/18/2013	1345	6.41	3.68	130	0.009	\$3.69	893	6.25				13.48	Automorphism (Company)
WW A	2/17/2014	11.05					7	1393	6.46					Water cloudy, whire 30Ne odor
AN A	2/26/2014 5/19/2014	13.27	5.78	1.46	100.00	9.018	16 69	1090	6.03	0.29	54.0	20.4	16 33	3DMe present in purge water.

NVI-5	2/9/2012	11.19		0.54	120	DD59	13 94	1.212	7.22 6.92	0.47	320.2 79.9	27	11.30	Water appeared to be clear, no odor: Pump intake depth at 24 feet BGS. Water appeared to be clear, no odor: Pump intake depth at 16 feet BGS.
AVI 5	6/13/2012	11.36	4.54	13.31	522	0.010	14.1	1 620	6.09	11.21	63.8	2.04	11 19	30Me in purge water. Purge water appeared to be suited, while in light gray, 30Me ador.
MW 5	12/13/2012	11.13		532	140	0.967	14.4	1670	7.1				No Sample	
dW 5	2:12/2013	14 50		282	130	0.012	12.7	1,510	565				14.55	Blank paraculates in purge water
WW 5	6.18/2013	1154		6.07	140	0.006	16.3	190	661				11.56	
AN S	10/7/2013	16.28		4 17	130	0.306	18.74	1131	6.03	199	53.7	849	16.35	Warenwas dear, slight 3DMe odor.
May 5	2/13/2014	13.09		•	1000		8.2	2210	5.26	3.25	200	0.7557.00	No Sample	
MW 5	2/26/2014	13.09					8	550	5.5					3DMe presen in purpe willer.
MV 5	5/20/2014	16.15		4.69	60	0.005	17 17	16/38	6.16	0.20	402	19.0	16 17	
	2/9/2012	12.06	863	3.50	140	DDM	14.54	564	9.34	1.80	316.8	5.5	12:15	Waser appeared top be clear, no odor. Pump make depth at 32 feet BGS.
MW 5M	6/13/2012	12 33		0.35	140	0.106	1866	531	8 80 8 80	1.16	5.0	205	12.45	Water appeared to be clear, no odor. Pump intal e depth at 32 feet BGS.
MAY SM	12:12:2012	15 19		6.41	120	0.005	15.99	504	8.45	2.24	223.8	9.6	15.23	Water appeared to be clear, no odor. Pump intake depth in 33 feet BGS:
disk SM	2:11:201.1	15.40		9.92	160	0.004	1471	546	870	377	138 7	4.42	15.45	
NW 5M	6172013	15.05		6.96	113	0.004	19.26	417	8.81	2.56	-15.7	4.25	15.05	
VV SM	5/20/2014	17.32		5.95	80	0.004	19.62	516	8.23	0.12	-143.7	12	17.35	
WV 6	2/7/20*2	16.15					9.98	441	6.95	5.56	235.8	5.7	1305	Well purped dry. Purge water appeared to be turbed with no offer
MeV o	6/13/2012	12.30					21.87	767	7.21	2.96	46.5	>1100	15 38	Well purped dry. Purps warer appeared to be uitfall with no odor
#W 6	12:12:2012	10.19		2.75	120	2.011	1375	409	7.68	197	-1617	8.9	10.27	Water appealed for beiclear, no odor Pump make depth is 7.5 feel BGS.
WV4 6	2:11:2013	16 44		2.46	170	0.018	10.13	665	6.91	7.14	108.9	3.77	16.45	
MV/ 6	6/18/2013	10.40		156	150	0.025	18 60		6.87	2.32	430	9.0	10.40	
ME/4 6	5/20/2014	15 17	4.27	1.12	100	0.024	17.08	437	7.13	0.71	48.5	1.25	15.9	

Table 4 Groundwater Field Parameter Data - 2012-2014 RBTC LDB#1, Lettrfield, Kentucky AMEC Project No. 6251-12-1002

Well No.	Date	Time	Depth to Water	Water Level Drawdown (ft)	Purge Rate* (milimin)	Specific Capacity	Tempera fure (°C)	Specific Conductance (SC) (uS/rm)	pH (S(II)	Dissolved Oxygen (DO) (mg L)	Oxidation Reduction Potential (ORP)	Turbidity NED	Sample Time	Notes
MW 7	6/14/2012 12/12/2012	8.25	3.03	0.44 180	180	0.108	20.13	2,107	E-97	0.14	34.1	4.30	# 30	Water appeared to be clear, no odor: Pump intake depth at 9 feet 8GS.
#N 7	1/7/2010	15.50	3.28	0.94	120	0.018	13.0	1.650	6.49		2		12:10	NOMe in purge water. Purge water appeared to be hirbst, whire to light gray, slight 3DMs odiv.
#W 7	2/12/2013	11.17	2.89	1.13	*10	D 026	12.2	1.380	522				No Sample	DMe in purgs water. Purgs water appeared to be slightly luckd to clear, acht gazy, slight 30Me odor.
TVV 7	6/18/2013	8.58	3.75	1.57	140	0.024	22.1	1040	6.49				9.03	Cloudy, slightly turbid, 30Me odor
AVV 7	2/13/2014	12.42	-				10.7	1420	6.37					Water slightly ribustry, 3DMe odol
801.7 801.7	2/26/2014	12.52		-			*0	1310	5.8				No Samuel	SCIMe present in purpe water.
NV-F-	5/20/2014	16.5.1	191	141	150	0.028	18.14	1609	6.56	0.25	3.70	73.1	16.55	Therefore Data parts on Com Discussion
W/ B	2/9/2012	14.45	6.39	141	120	0.022	150510	798	6.89	0.49	348.7			
NV.6	6/12/2012	16:51	7.77	2.85	150	0.014	27.47	1.031	649	0.16	20.3	2.6	14 55	Water appeared to be clear, no odor Pump while depth or 16 feet BCS.
IV H	12:12/2012	16.30	*8.83	12.51	300	O DOM	13.80	3,120	5.51	30277	200		16.50	Water appeared to be clear, no odor. Pump intake depth a: 11 feet BGS.
NV 8	2/12/2013 5/19/2013	10.55	7.70	2.26	100	0.012	11.6	1.860	4.99				8.15	Well purged dry, 30Me in purge water. Purge water appeared to be bulbut, while to light gray, slight 30Me odor. Chocky, 30Me odor.
NV 8	10/7/2013	14.59	7.53	3.16	135	0.011	21.06	1867	5.15				10.59	Some grange paraculates
W 8	2/13/2014	10.50	1 34	3.07	100	0.009	21.76	1790	5.19	0.62	44.5	6.39	15.05	Water was clear, skynt 3DMe pdor.
EW R	2:26/2014	12.24	- 5				12.00	1320	5.5				Na Sample	
N/ H	5/19/2014	12.50	*4 0#	4.88	120	0.006	22.63	1240	6.11	5.63	6.2		No Sample 13.00	3DMe present in purpe earlier.
W SM	2/7/2012	16.13	14.64	4.56	120	Dog T	107.00	2007	921016	102241				
MS-W	6/13/2012	13.00	21.50	12.08	160	0.007	17.16 21.74	1.312	7.87	1.81	252.9	2.2	16.20	Witten appeared to be clear, no oday: Pump intake depth at 34 feet BGS
W BM	12/12/2012	12 30	10.47	1.13	110	0.026	17.47	1.036	804	0.31	1102	5.09	12.05	Water appeared to be clear, no oldor. Pump in take depth at 34 seet 8GS.
W BM	2/11/2013	16.40	14.51	3.85	100	0.007	15.52	6494	7.91	3.97	1988	7.4	16.45	Water appeared to be clear, no oldor. Pump intake depth at 3.1 Well BGS.
MR WIT	6/18/2013	16.05	17.01	5.76	110	0.005	21.16	760	7.73	0.90	641.5	3.75	16.00	
W.SM	5/19/2014	11.25	15.21	5.50	130	2,006	19.19	656	761	1.54	94.4	2.85	11.30	
N 9	2 8/2012	15.05	7 20	104	120	0.000	16.98	931	5.82	0.28	3055	4.5	198006	MALE ENGINEER CONTRACTOR OF A PROPERTY OF A STATE OF A
W 9	6/14/2012	9.55	8.21	2.09	180	0.023	18.33	2013	6.45	0.20	28.9	6.20	10.00	Water appeared to be clear, no odor. Pump intake depth at 12 feet 8G S
W 9 W 9	12/11/2012 2/12/2013	15.03	7.40	1.50	160	0.028	18.99	1.085	7.17	123	218.7	210	15 10	Water appeared to be clear no order. Pump increase depth at 12 feet 8GS. Water appeared to be clear to eightly out-oil, no odor to a ight decomposed order. Pump intake depth at 12 feet 8G.
W 9	6/19/2013	15.55	641	1.72	160	0.025	17.28	1 64 9	6.76	C.16	51.0	3.76	13.00	A service of the serv
W 9	5/20/2014	18 56	6.59	149	150	D 027	17.71	*219 1125	6.63	0.17	72.4 17.0	2000	15.55	Visibily clear. Meter not working
10000	1001001011						1111	113671	0.2	11-40	17.0	2.36	18.55	
W 10 W 10	2/8/2012 6/14/2012	12.19					10.92	517	7.53	4.65	243.1	550	14.05	Well purged dry. Purge water appeared to be furbid with no ador-
W 50	12/11/2012	14 29	549	1.90			20.52	668	6.52	3.79	94.6	48.7	16.30	Well purged dry. Purge water appeared to be clear to slightly turbid, no isday
W 10	1/8-2013	11.27	6.51	1.82	110	D 015	15.9	2.430	6.77				14 %	3DMe in purge water. Purge water appeared to be furtiid, while to light gray, 3DMe odox.
W 10	2:13/2013	12.42	4.2H	3.30	120	D 017	14.4	1790	6.5				No Sample	No sample to be observed. Approx. 1 gation ourged.
W-10	6/19/2017	11.57	6.73	1.71	130	0.020	17.59	1886	5.24				12.46	Sign without and subid. 40Me rator
W 10	5/20/2014	1801	461	3.32	100	0.008	15.68	1506	€ 27	1.75	M.O.	19.7	18.03	
A'T'A	2.8-2012	9.35	3.51	0.29	180	0.164	16.83	3.151	2.13					
V 1'A	6/14/2012	15.54	3.67	0.23	120	0.138	17 99	4.526	0.96	0.36	336.6	3.0	9.45	Water appeared to be clear, no odor. Pump intake depth at 12 feet BGS.
V TIA	12/13/2012	16 18	3.98	0.37	210	0.150	19.51	8.963	7.15	0.96	77.9	7.49	15.40	Water appeared to be clear, invividor. Pump intake depth or 12 feet BGS.
N 11A	1/8/2013	10.05	3.49	0.24	180	0.194	17.62	6.639	6.94	0.43	-185.3	0.86	10.08	Water appeared to be clear, no odor. Pump intrike depth at 12 feet BCS.
V 11A	2/12/2013	13.45	3.92	1.14	200	0.046	15.92	6.755	6.89	0.40	276.4	2.21	17.55	
V-11A	5/21/2014	12.57	3.42	D 13	7661	0.121	17.17	9958 12186	8.95	0.39	1915	D85	1100	Pump edale at appear 12 Seet. Water was clear, no neon
			2000			W-285	000170	12786	7.04	0.42	78.5	11	11.51	
V T'B	2/8/2012	8.30	752				12.58	20.650	6.45	4.82	261.4	>31000	13.45	West purged dry. Purge water appeared to be suited with no odor.
N 11B	12:11/2012	1138					19.80	15 627	6.53	2.26	136 ()	521		Well purged dry. Purge water turbed, gray thrown, no odor.
V 11B	1/6/2013	9 19	6.57 6.42	3.14	120	0.010	15.47	11 072	75	101	429.3	600	9.44	Well purged dry. Purge wither furbid, gray to black, with some "the BOS 100 carbon particles, no odor-
V 118	2/12/2013	15.00	470	1.06	150	D D20	16.51	10.286	7.03	0.37	239.1	33.7	52.55	Well purped thy Purge warer east slightly turbet, gray, an ottor
V 11B	6/19/2013	14 02	5.41	4.06	100	0.007	18 30	9362	6.91	1.20	248 7 176 6	14.1	15.70	
118	5/21/2014	10.47	521	2.18	100	0.0,5	16.45	9.812 9024	6.90	0.92	97.4	151 93	14.15	West went dry. Pump intake at approx. 6.5 feet, Water was clear, no odor.
12A	2/8/2012	12.15	4.24	0.59	+60	0.073	17.04		2000					
124	6/14/2012	9.25	4.62	0.59	100	0.072	17.05	3,146	7.16	0.45	299.7	4.1	12.20	Water appeared to be clear with odor. Pump intake degrin in 12.5 feet BGS.
12A		16.40	5.03	109	140	0.027	19.53	3.514	7.75	(1.23)	His 7	2.12	0.30	Water appeared to be clear, no odor. Pump intake nepth at 13 feet BGS.
12A	1/8/2013	9.22	4.46	0.67	100	0.039	18.11	4 684	753	0.42	96.2 160.4	69.3 18.8	10.45	Purge water furnid, gray brown, with some fine BOS 100 zarbon paracles, ou noor
12A		15.18	474	1.36	240	0.047	17.23		7.47	0.02	67.9	502	9.25 15.20	Programme with the control of the co
12A		14.57	4.14	1.12	130	0.031	17.49	4255	7.19	0.30	44.7	202	14.57	increasing sixting vielth doze down. BOS fool dayingsing
12A	5/21/2014	10:15	475	0.48	120	0.066	16.76	4811	7.18	0.26	142 II	119	11.20	
128	2/8/2012	9.15		-			11.68	2.290	709	4.16	242.2	95	13.90	Market control of
128	6/14/2012	11.11					19.83		6.20	17.1	1070	10.7		Well purged dry. Purge water appeared to be notice with ador; Well purged dry. Purge water appeared to be hotist with slight odor.
128	12/11/2012	9.05	565	274	7.90	0.013	16.79	2.862	0.40	2.79	157.5	77.1		Purger water appeared to be new, sign: odo:

2016

Table 4 Groundwater Field Parameter Data - 2012-2014 RBTC LDB#1, Leitchfield, Kentucky AMEC Project No 6251-12-1002

Vell No.	Date	Time	Depth to Water (# 650P)	Water Level Drawdown	Purge Rate*	Specific Capacity (gornfr)	Tempora ture (C)	Specific Conductance (SC) (uSizm)	pH SUI	Dissolved Daygen (DO) (mg/L)	Oxidation- Reduction Potential (ORP)	Turbidity (NTI)	Sample Time	Notes
rW 128	182013	10.15	5.09	124	105	0.022	16.91	3 679	6.73	2.05	168.5	3.96	10 17	
W-128	2.12/2013	15 03	5.29	177	120	Brc D	15.27	4 546	672	1.31	117.1	2.65	15 05	Pump stopped at 15.40 to allow recharge.
W-128	6/19/2013	15.37	4.40	1.10	110	0.025	18 63	3407	6.37	1.32	87.1	126	12.45	Purify stripped at 10 42 to allow the heigh-
W 128	5'2' 2014	12.40	6.58	7.86	*10	0.011	16.49	4252	6.55	0.36	156.6	102	12.4	
		0.000	3.44	0.03	120	0.034	10.90	239	5.75	0.29	3/34	2.2		Water appeared to be clear, no odor, Pump intake depth at 10 feet BGS.
W 13	2.6/2012	16 34	424	120	290	0.042	23.64	568	5.23	0.29	15.2	349	10.50	Water appeared to be clear, no odor. Pump intake depth at 10 feet BGS.
ev 13	613/2012	14 27	5.40	292	150	0.054	15.2	710	7.02				14 %	30Me in purge water. Purge water appeared to be turbed, whire to light gray, slight 30Me odor.
W 13	1/8/2013	17.03	4.20	0.86	180	0.049	12.3	1 030	5.8				No Sample	No sample to be obtained. Approx. 1 75 gallons purged.
W 13	2/11/2013	13.40	5.20	3.63	120	0.009	11.7	1 030	5.04		*			Duplicate sample obtained. Low flow purging wour flow through cell or YSI 556. Hanna used to obtain parameters.
V2-13	6/18/2013	16:14	7.51	5.09	*40	0.007	21.41	1479	541					Turbid, sewage odor
V4.13	2:13/2014	1:15	-				5.8	50.90	643	(5)				Water slightly cloudy, white, 3DMe odor. 3DMe present in purple water.
W-13	2.25/2014	12 (29					6	950	8.1	0.46	11.4	72.2	16.35	and the property of the second
W 13	5/19/2014	16 10	8.97	5.17	130	0.907	18.99	992	6.02	0.46	11.4	84.4	0.34	
			0.00	77.45	120	0.032	15.08	530	8.03	0.71	3.18	19	15.50	Water appeared to be clear, no odor: Psimp invalia depth at 30 feet BCS.
W 13M	2/8/2012 6/13/2012	920	6.88	1.97	240	0.033	19.68	1.304	7.73	0.19	41.5	5.65	9.25	Water appeared to be clear, no odor. Pump intake degrit at 30 feet BGS.
W. 13M	W13/2012()	4.50	9.03	1.00		- Marca ()	of the section	0.0200	505500	F 2003				로 즐겁게 보면 보면 보면 보면 보면 보면 보면 보면 되었다. 그런 사람들은 보는 것이 되었다.
W-13M	12:12:2012	11.10	7.37	0.80	120	0.040	17.48	1-033	7.77	0.29	184.6	6.12	11.15	Waster appeared to the clear, with some fine suspended particles (organic), no odor; Plimb inbike decrit at 30 fee: BC
W-13M	1962013	13.40	7.70	1.12	110	0.026	17.71	808	7.62	0.47	125.2	4.11	No Sample	No sample collected, used flow through cell, YSI 556, and HACH Z100P for parameters.
W 13M	2.11.2013	15.10	6.73	0.87	113	0.035	15.59	688	7.89	1.34	321.5	A.B.		No ciclui, clear, Pump intake level 26 feet BMP.
WET W	6/19/2013	9.25	7.42	081	113	0.036	19.96	666	7.64	C 29	19.8			Turbidineter not working. Sample was visually clear.
MET W	10/7/2013	16.10	7.47	4.56			23.06	1250	5.63	0.65	55.5	453	16 15 15 30	
W.13M	5/19/2014	15.45	7.54	1.40	120	0.027	19.27	556	7.59	0.24	17.1	2.00	110-80	
				1013			12.14	280	6.65	0.22	367.3	40	1410	Water appeared to be turbid, no odor, Pump make depth at 12 feet BGS.
W 14	2/9/2012	1159	4.12	1.12	160 240	0.038	23.31	752	6.44	0.34	328	9.71	14.45	Water appeared to be furbid, no poor. Pump imake depth at 12 feet BSS.
W-14	6/13/2012	14 40	3.92	161	80	0.013	15.70	520	6.40	0.29	59 *	25.5	14.55	Water appeared to be slightly turbid, with some fine suspended paracles (rustly, organic), hig odd?
W 14	12/12/2012 2/11/2013	16.40	3.92	0.96	175	0.048	1186	335	6.33	0.51	297.2	34.3	16:45	
FW 14 FW 14	6:18/2013	15 10	4.39	106	150	0.037	21.00	388	6.38	6.20	52.9	16.9	15.10	
149 14	1:17/2014	12.20	396	1 04	160	0.041	11 05	397	6.49	0.27	117	29.1	12.25	
rvi 14	2/26/2014	12 39	-				70	360	6.4					SDMe present in purge water.
172 14	5/20/2014	9.15	5.40	2.29	130	0.015	17 68	513	6.51	0.23	830	3.24	9.25	
	100/96/00/00/01	7.676.000		-			9.16	470	7.05	3.29	280 9	>1100	13:00	Well purped dry. Purge warer appeared to be suited with no odda.
NV 15	2/7/2012 6/14/2012	16 39					24.18	979	7.07	2.53	133.1	1000	16.40	Well purged dry. Purge warer appeared to be surfaid, brown, no octor.
VW 15	12.12.2012	9.09	279	269	120	0.012	12.64	2.11	7.98	4.95	-156 4	45	14 1 T	Purge water appeared to be slightly turbid, brown, no odo:
MV9-15	2/12/2013	6.25	174	2.70	200	01020	8.97	506	7.32	1.11	92.5	3.31	8.00	
MW 15	6/15/2013	11.50	4.45	2.04	150	0.019	20.51	460	7.07	0.39	29.8	19.7	11.50	
WW 15	5/20/2014	16.64	3.89	146	100	0.018	17.79	265	6.50	0.96	54.9	11.7	18.06	
							4.45	318	6.26	4.90	271.0	>1100	14.55	Well purged dry. Purge water appeared to be jurted, no orion
VW 16	2/9/2012	11.35					7.48	515	6.82	166	21.2	>1100	15.25	Well purged dry. Purge water appeared to be turbed, brown, no odor:
VW 16	6-13/2012	11.15	291	1.63	120	0.016	1393	793	7.64	0.64	-1693	70	11.52	Purge winer appeared to be cie.W., ho odor: Pump intake depth at 9 leet 8G5
WW 16 WW 16	2/12/2012	14.20		2.41	+30	2014	11.13		6.82	1.80	79.2	3.05	14.25	426 CENTRAL PROPERTY AND STATE OF THE STATE
MW 16	6/18/2013	9.35	4.21	172	110	0.017	18 90	508	6.94	0.34	5.7	4.02	9.35	
MW 16	5/20/2014	10.49		573	100	0.006	10.15	504	7.03	0.35	21.2	1.78	10.51	
													100	Manager and Company and April 1997 a
MW-17	2/9/2012	8.21	4 10	168	90	0.014	11.22		6.54	0.46	290 1	3.4	8:30	Water appeared to be clear, no odor. Pump intake depth at 17 feet BGS.
MW 17	6/13/2012	14 44		1.50	80	0.014	23.24		6 22	C 22	39.4	2.29	8 30 9 15	Water appeared to be clear, no odor. Pump intake depth at 10 feet BGS. 3DMe in purgle water. Purgle water appeared to be turbed, while to light (pilly, 3DMe odor.)
MAY 17	12:13:2012		9.03	7.54	250	0.009	12.7	1 710	6.05 7.8	100	100	-	No Sample	No sample to be obtained. Approx. 3 gallons purged.
MW 17	17/2013	14 37		147	160	2.030	12.3	1.560	5.59				13.50	Cloudy, slightly turbid wi 3DMe odo:
MW 17	2.12/2013 6/18/2013	13.47		173	140	0.021	23.40		6.64				10.38	
MW 17	13/7/2013			D79	140	0.047	23 34		5.56	0.39	336	35.9	17.50	Water was clear or whoe paraculates, 3DMe odor.
MW 17	2/13/2014			11000	- 6		8.1	2170	5.44			0.20	No Sample	Water very cloudy, white, 3DMe odor.
MW 17	2/26/2014			2			19	1820	5.5				No Sample	3DMe present in purpe water
M'W 17	5/19/2014			2.23	100	0.012	16.59	1211	6.08	0.83	7.60	717	15.15	
line pro-	175.0047	4.70				23	7.49	207	8,1€	3.36	242 7	×1100	13.25	Well purged dry. Purge water appeared to be suited within clotton
MEN TH	2:7:2012 6:13:2012	8 23		- 3			27.88		6.48	281	165.0	×1100	14 35	Well purped dry. Purge water appeared to be furtid with no odor.
MW 18	12/12/2012			186	140	0.020	53	830	5.98	100			9.00	SDMe in purge water. Purge water appeared to be surbid, whire to light grey, slight 3DMe odder
MW 18	212/2013			2.92	120	0.011			5.28	- 5			10.28	(OMe odor cloudy)
MW 16	6/19/2013		4.11	4.11	120	0.006	21.00		5.61				9.52	
MW 18	5/19/2014		4.46	4.11	100	0.006	14 29	628	601	0.49	47.5	26.7	12.57	

Table 4 Groundwater Field Parameter Data - 2012-2014 RBTC LDB#1, Leitchfwild, Kertucky AMEC Project No. 6251-12-1002

Well No.	Date	Time	Depth to Water (# 814P)	Water Level Drawdown (ft)	Purge Rate* (mi/mo)	Specific Capacity (gornff)	Tempera ture (°C)	Specific Conductance (SC) (uStom)	pH (SU)	Dissolved Caygen (DO) (mg L)	Oxidation- Reduction Potential (ORP)	Turbidity (N71);	Sample Time	Notes
NEW 19	6/13/2012	9.30	100	- 11	1000000		23.05	1580	6.79	1.15	140.1	>1100	16.25	
MW 19	12/12/2012	16.44	3.61	3.16	120	0.010	12.17	1 096	6.98	0.66	-168.4	6.3	16.50	Well purged dry. Purge waiter appeared to be ruided, no oday. Purge waiter appeared to be dear, no oday. Purge waiter depth at 5 feet 8GS.
VW 19 VW 19	2/12/2013	945	4 37	193	175	0.024	11.24	1.395	6.92	1.32	282 B	1.16	9.50	Fig. and an appearance of the coests, for risks, in property in take deputs at its level BIGS.
MW 19	5/19/2014	15.21	4.88	4.60	80	0.005	21.50	1511	6.84	0.80	28.5	1.03	15.25	Pump make at approx. 7 feet. Water was clear, by odor.
		2116 (2011)	568	4.05	-100	0.007	15.60	1554	5.55	0.72	618	1.19	12.05	Contract and the second
AM 20	2/7/2012 6/14/2012	15.30		- 5		-	11.94	374	6.73	5.33	201.3	5.5	1145	Well purged dry. Hurge will er appeared to be clear, the odor
VW 20	12/11/2012	16.34	7.04	100			21.01	632	7.47		134.6	15.5	14.21	Well purped dry. Purpe we'er appeared to be slightly lurbed, no odor
PW 20	2/11/2013	14.05	4.67	4.50	160	0.010	13.19	497	7.66	3.10	222.5	8.42	16.35	Purps with appeared to be dear, no odor
tW 20	6/18/2013	11.45	411	3.40	150	0.012	1152	527	7.49	2.90	257.6	2.87	1415	
127, 20	5.19/2014	17.56	4 /55	309	*00	0.009	16.74	513	7.60 6.25	3.25	43.6	0.51 0.60	11 AH 17 55	Pump robe adapprox of feet, Water was crear, no odor.
fw.21	2/7/2012	15.30		2								11.00	14.50	
W 21	6/13/2012	14 05	200	-			13.26	6.23	6.60	5.06	212.3	3.9	13:55	Well purged dry. Purge water appeared to be clear with no object
W 21	12/12/2012	16.11	11.86	195	700	0.014	19.13	363 270	7.07	2.54	102.1	291	16.15	Well purped dry. Purge water appeared to be rurbat with no many
W 21	2/12/2013	8.15	9.11	362	150	0.011	10.4	2.700	6.04				18.14	Well purged dry. 30Me in purge water. Purge water appeared to be ruibid, white to light gray. 30Me odo:
W 21	6/17/2013	16.29	*2.47	3.20	130	DO11	212	1200	572		7.5		# 25	announce and appropriate measurement and the many of the first of the
W 21	10/7/2013	12 49	11.90	2.10	100	0.013	2161	1850	6.44	0.92	177.00		16: 32	
W 21	2/13/2014	12:15	T			200	5.2	800	6.47	0.80	77.6	516	1300	
W 21	2/26/2014	11.54					. 14	930	0.5					Water claudy, who examing 30Mb endoy
FW 21	5/20/2014	15.05	12.41	3.55	7.567	0.011	18.21	1237	6.48	1.50	50.2	>1000	no Sarreia	SOMe present in purger water And went dry (\$15.10)
W 22	2/7/2012	14.00	6.90	4.19	*60	0.00	11.68	1 095	7.42	0.54	283.4	13	14.06	
W 22	612/2012	13.25	871	5.46	200	0.0.0	23.89	1559	6 98	149	33.5	6.60	14 05	Water appeared to be rilear, no odor. Pump interact depth or 9.5 feet BGS.
N-22 N-22	12/12/2012	10.45	6.63	4 34	710	0.007	115	2.330	7.06		34.5	47.00	13.30	Water appeared to be clear, no odor. Pump intake depth at 9.5 feet 8GS.
	1/7/2013	16.55	9.21	3.06	110	0.009	9.5	2.270	6.2				No Sample	3DMe in purge water. Purge water appreciated to be jurded, while to light gray, 3DMe option
N 22	2/12/2013	9.16	7.47	4.93	110	D 006	9.4	1.360	5.54				9.18	Maria de la companya del companya de la companya de la companya del companya de la companya de l
V 22 V 22	6/17/2013 10/7/2013	14 36	10.31	3.60	120	0.009	23.10	1440	6.50				14.05	Cloudy, skightly subset, 30Me popul
Y 22	2/13/2014	12.30	9.04	5.71			21.17	1743	5.78	0.45	67.0	34.8	12.15	
v 22	2/25/2014	12.05					9.4	1460	6.22			SER		Water cloudy, while records particulally. IDMe odos
V 22	5/20/2014	17.00	10.13	7.72	150	0.005	18.07	1750 510	6.10 5.97	0.41	15.7	53.5	No Sample	3DMe present in puritie warer
V 23	2/7/2012	15.18	6.50	9300						3000	3207	53.5		
W 23	6.12/2012	15.15	815	5.53	200	0.0*3	14.56	746	7.26	0.31	3194	1.0	15.25	Water appeared to be clear, no poor. Pump intake depth at 10 feet BGS.
V 23	12/12/2012	9.55	0.85	4.13	110	0.009	22.72	956	6.99	0.79	25.6	4.63	15.20	Water appeared to be clear, no odor. Pump intrake depth at 10 feet BGS.
V 23	2/11/2013	15.20	4.27	2.09	150	0.019	18.19	1 404	7.03	0.29	227.3	3.17	10.00	Water appeared to be slightly lurbid with truspended particles (organics) includor
V-23	6/19/2013	10.55	6.43	4.97	110	0.006	2201	926	6.98	0.13	316.3	3.05	15.25	
V-23	10/7/2013	14 05	5.30	3.18			24 (90)	955	6.45	0.06	131.9		10.55	Meter was not working. Water was validly clean
V.21	5/20/2014	11.20	9.33	6.37	140	(1.006	19.13	908	6.95	0.22	37.5	2.17	11.00	
24	27/2012	15.55	5.00	: #		161	13.44	NOR	677	5.16	50,660	9790	220000	
/ 24	5:12/2012	17.05	832	7.21	240	0.009	23.99	975	676	2.94	55.5	457	14 (15)	Well purped dry. Hurge water expensed to be cavar with no none.
24	12/11/2012	16.10	5.41	4.37	125	0.008	17.42	1.261	6.80	121	160.3	* 12	16 15	Water appeared to Se clear, no odor. Pump inside depth at 9 feet BGS
V 24 V 24	2/11/2013	16.20 8.57	3.42	276	150	0.014	12.27	1 070	7.00	2.36	292.2	0.54	16.25	Water appeared force clear, no odor, Primp intake depth with leet BGS.
V 24	5/19/2013 5/19/2014	18 35	5.17	3.99	100	0.011	22.55	1017	5.76	2.58	228.6	* 41	9:00	Pump stoke at approx. 10.5 feet. Water was clear, no odor.
625	Tarresta					0.000				0.54	57.4	6174	18.34	
25	2/8/2012	16 00	4.40	203		200	11.33	25.725	6.78	2.91	258.9	24100	13.55	Wed purged dry. Purge water appeared to be suited with no ador.
	12:11/2012	9.10	4.04	1.14	200	0.026	18 87	66 760	6.42	C 37	434	112	16.05	Water appeared to be clear, no odor. Purity intake depth at 8 feet BGS.
25	2/13/2013	941	3.37	1.27	210	D D 544	16.52	18,075	7.00	OET	189.6	74.8	9.15	Purge water appeared to be very furbid, dark gray to black, with some fine BOS find carbon postniers, no odor
25		11.17	3.23	128	80	0.017	15.12	18 400 22061	7 (m) 5 m)	0.69	1296	14 #	14.4.5	
25		1344	364	0.89	150		15.90	14860	7.24	0.86	1910	1.17	11.46	Pump intake at approx. 9.5 feet. Water was clear, slight chaster odor Inwards end of purging.
26	2/8/2012	11 23	5.39	1.67	180	0.024	14.87	2.222						
		1145	4.34	DAF	80		18.71	6.272	6.71	C 42	2923	2.1		Water appeared to be clear, odor. Plumpurial eldepth at 10 feet BGS.
		17.01	693	347	150				662	0.25	96.9	* 40		Water appeared to be clear, odor: Pump intake depth at 10 feet BGS.
	2/13/2013	9.55	3.71	087	200		18 96 15 43	10.050	7.27	0.26	1427	43.2	17.05	Purge water appeared to be hutlid, dark gray to black, with some fine BOS 100 narbon periodes, no odor
		9.18	4.12	151	125			9.435	6.91	0.40	278 (1	102	70.00	
		14.45	387	951	100		17 6H 16 38	19683	6.86	0.51	44 7 77 5	19.7 50	9.20	
27	200000000000000000000000000000000000000		See at	10000000000000000000000000000000000000					CONTRACTOR	0.000	DANGE OF	50000	- 447	
		14 00 12 05	621	0.56	90		15.77	2.272	6.51	0.30	266.7	* 6	14.10	Water appeared to be clear, no odor. Pump intrikie depth at 10 feet BGS.
			587	1.50	200		17.79	5.269	6.08	(1.35)	48.2	4.56		Water appeared to be clear, no odor. Pump intrike depth a; 10 feet BGS.
27		12.25	5.74	198	130		18 30	1 57.5	5 44	1.40	161.7	18.2		Purger wider appeared to be turbed, dain gray to black, with some fine BDS 100 cerbon particles, no nider
				(149 T	105	0.030	16.68	2 075	6.66	11.70	178.3	5.21	11.35	e e e e e e e e e e e e e e e e e e e

4 d 6

Table 4 Groundwater Field Parameter Data - 2012-2014 RBTC LDB#1, Leitclfield, Kertucky AMEC Project No. 6251-12-1002

vell No.	Date	Time	Depth to Water	Water Level Drawdown	Purge Rate*	Specific Capacity	Tempera fure	Specific Conductance (SC) (uStrn)	pM (S.U.)	Dissolved Oxygen (DO) (mg/L)	Oxidation- Reduction Potential (ORP)	Turbidity (NTU)	Sample Time	Notes
			***	0.08	120	0.337	15.63	1.591	671	2.09	270 H	'4	20.00	Light gray in clear; alight's subtid. Time BOS: 100 particulate. No odor
W 27	2/19/2013	9.59	721	2.71	110	0.011	17.28	1417	6.08	0.30	14.2	44	13.55	Meler broken. Water was vestry clear.
W 27 W 27	5/21/2014	17:05	6.56	185	95	0.014	15,14	*396	6.05	0.32	133.9	11.7.7	17.10	
													70-2000 2	10 to
W 28	2/9/2012	9.57	5.25	0.55	140	0.067	12.64	396	6.99	0.25	-319.3	2.4	10.05	Water appeared to be clear, no odor, Pumo intake depth at 10 feet BGS. Water appeared to be clear, no odor, Pumo intake depth at 10 feet BGS.
W 26	6/14/2012	16:15	5.77	1183	200	0.064	22.74	1,123	6.78	2.43	32.6	466	10.35	3DMe suspended particles in purge water. Purge water appeared to be clear to slightly suited, slight 3DMe ordor
W 28	12/13/2012	10.30	6.03	4.43	1298	0 377	11.80	600 583	6.75	0.394	893	5.29	13.30	Slight ador to purge water.
W 28	2.11/2013	13.24	5.96	189	180	DD13	19.32	505	678	0.27	125.2	10.7	16.25	and the Company of th
W 28	6/17/2013	16.25	6.08	2.18	110	DIO.	44 G	510	6.56	Chi.			No Sample	Water clear, purige and black paraculate, 3DMe note:
t/1 28 t/1 28	2.13/2014 5:20:2014	12.55	5.49	0.47	100	0.063	16.63	700	6.93	0.31	14.1	269	10.15	
				3.52	100	0.008	14.01	1581	6.18	3.96	169.6	9.18	947	
W 29	5-20/2014	9 44	7.06	3.32		0.000	2-92113	1966						
NV 30	6/18/2013	15 36	6.11	2.06	100	DB13.	16.18	1272	7.14	7.23	196.9	303	15.40	Pump intake at approx. 9 feet, Ware was clear, no odor.
W 30	5/20/2014	1154	6.13	281	100	0.009	15.06	1367	7.04	1.58	41.7	9.20	11.57	
#W-31	5/20/2014	5443	7.63	6.97	100	0.004	10.89	145	667	2 94	93.7	4.1	14.47	
							0.000000	1000	6.50	0.31	52.7	67.2	14181	
MW 32	1.17/2014	14 13	402	1.11	160	D D3H	10.21	573	06/505	0.31	94.1	LC w.	1.9	
		8.15	1246	10.56			19.51	37.356	6.69		200 B		No Sample	Waver appeared to be clear, no odor. Well purped dry
tw.5	6/15/2012	12.26	2.40		100	- 2	18.81	10.624	677	0.47	201.4	3.80	12.30	Purge water appeared to be clear, no odor.
W A	2:13/2013	11.25			124		15 00	9 346	6.87	0.42	139.5	1.24	11 30	
09.5	6/19/2010	1345			120		17.49	9/99/9	6.48	0.35	71.2	7.13	13.47	
W 5	5212014	15.50	321	0.70	150	0.057	15.94	4435	6.96	0.29	138.5	13.1	15.52	
TW 6	6/15/2012	16.35	11.75	9.08			18.70	70.000	6.54	1.82	52.3	- 1	9.25	Water appeared to be clear, no odor. Well purper dry. Well purper on years appeared to be very luckd, light gray, with some fine BOS 100 carbon particles, no
					480	0.005	17.35	30.974	672		161.1		10.45	adox.
144.6	12/11/2012		924	625	120	0.005	15.05	37,150	6.85	1.79	1293	238	10.40	Well purped div.
TIV 6	2/10/2013	10 17 8 50			1,00		- 100	7000	200		-	10000	9.34	Well wer, dry, Metering, water was visibly dear
0 W I	5/20/2013 5/21/2014	13.00		- 9	100		16.39	19999	7.08	2.26	119.6	154	15.05	Ran dry. Pump stopped
IW9	6/15/2012	8.18	25300	8.65		(2)	19 29	5.900	6.51		104.5		10.45	Water appeared to be clear, no odor. Well purped dry
									*100		127.7	:867	15.15	Well purped dry at 10.25. Purge water appeared to be very turbid, gray to black, with some fine BOS 100 carbon particles. No odor
T(4 9	12/11/2012			8.25	110	0.004	18.17	11.431	7.45	0.23	40H C	56A	12.50	Well purped dry
149 9	2/13/2013	12.24			120		16.62	13,280	7.17	0.32	155.1	v1000	1017	Pump make at approx. 9.5 feet. Water was very jurbet, gray
1W 9	6/19/2013	10.15		4.92	100	0.005		10430	7.32	1 39	104.0	>1000	16.47	Purge warer appeared to have BOS present
TW 9	5,210,014					10000			647	0.93	132 7	322	9.25	Waser appeared to be juilt of, Chlorese order, Well purped the
TW-10	6/14/2012	16.19	21.82	9.17			18.75	33.796	0.47	0.40				
fw 12	12.11/2012	10.21	11.82	8.08		643	17.99	28.006	7.07	C.16	1113	600	10.55	Well purged dry. Hurge water appeared to be hiddly dark gray to black, with some fine BOS 100 carbon particles, no odo
TW 10	2/13/2013				*00		15.46		6.45	0.50	281 E	231	12.55	
TW:10	6/19/2013	15 64	75		100	-	17.62		6.68	0.60	193.5	>1000	15-07	Pump inteller at approx. 9.5 feet. Water was very turbed, black.
TW 10	5/21/2014	9.32			100		16 24	18867	7.25	0.54	97.8	15	0.35	
TW-11	6/14/2012	14.30	17.09	13.26			18.34	8.855	6.96	5.17	86.1	134	14.45	Water appeared to be slightly turbid, no odor. Well purged dry
TW 13	12/11/2012			225,72	120		16.60		9.50	162	-1717	50	12.10	Purge waver appeared to be slightly turbid, light gray, with some fine BOS 100 carbon particles, no odor
1W 11	2/13/2010				100		16.59	7.823	6.81	0.43	281.1	108	11.00	
TW-11	6523-2013	9.30	- 1	. (40)	100		17.14		H.H.7	0.44	203.9		9.32	Plump scale at approx. 13.5 feet. Water was signly turbed to clear. Turbid more flashed 9.99. Possible melfundors.
TW 11	5/21/2014	15 36	6). H	100	120		16 25	12116	8.00	0.37	740	12	15.42	
TW 17	6/14/2012	10.25					18.16	4 4 3 6	6.54	15.2	*17.3	121	10.05	Water appeared to be slightly turbid, slight sweet odor; Well was not burged dry
EW 12	12/11/2012			500	120	0.006	1943	3.656	7.61	0.40	-199.7	32.3	10.55	Purge water appeared to be furbid, light gray, with some fine BOS 100 carbon paracles, no odor.
TW 12	2/13/2013			-	100		15.92	3.754	7.22	C 46	257.6	13.3	12 05	
TW 12	6/19/2013				130		17.26		7.13	0.24	49.4	890	16 42	Reserved Edition
1W 12	6/21/2014			145	160	0.033	16.57	5'23	7.10	0.32	155.3	2240	10.05	Batery ded Q 9.40
TW 13	6/14/2012	14.2	5 '58'	1977	20	- 22	17.75	6.622	6.66	1.05	21.0	353	10.05	Water appeared to be slightly furbid, no odor; Weil purged dry,
DW 13	12:11:2012				160		17.36		864	3.98	4759		15.50	Wes purged dry, Purge warer appeared to be surbid, gray to black, with some fine BOS 100 carbon particles, not odor
FW 13	2.13/2013				113		16.31		7.85	2.74	298.2	>1000	12.00	Very furted, fine BOS 100 particulates, no odor. Well dry after purging 1/2 gal.

Table 4 Groundwater Field Parameter Data - 2012-2014 RBTC LDB#1 Leitcfffeld, Kentucky AMEC Project No. 6251-12-1002

Well No.	Date	Time	Depth to Water	Water Level Drawdown	Purge Rate*	Specific Capacity	Tempera	Specific Conductance (SC)	рН	Dissolved Oxygen (DO)	Oxidation Reduction Potential (ORP)	Turbidity	Sample Time	
			(* BMP)	(71)	(miC/min)	(gpre-ff)	(°C)	(uS/em)	(\$47)	(mgt)	9994	INT'S	1.616	Notes
TW 13	6/19/2013	14.40	14.30	10.13	100	0.003	18.00	3563	7.17	1.65	26.7		15.55	Me'er op' working
IW EL	5/21/2014	16 16			80	X 2239 (A.	16.34	2756	7.31		80.5	1000	8.50	Randry (216.2). Sampled on 5/22/2014
VV-14	6/14/2012	13.30	16.78	11.31	HEN	190	16.02	4.515	7.83	1.46	36.3		No Sarada	Water appeared to be slightly turbid, no odon Well purged dry
										0.000	100.00		art radii d'ani	
W 14	12/11/2012	13.50	16.7	11.83	100	0.002	18.12	2.422	6.93	0.16	2**3	783	14.20	Well purged dry. Purge water appeared to be very furbid, dark gray to black, with some fine BOS 100 carbon paracles, no poor.
W 14	2/13/2013	11.10		-	110		15.91	2,113	7.70	1.40	321.6	95	11 15	Light frown and gray, very fine BOS 130 particularies, no odgr
W 14	6/19/2013	12.55	8.35	4.01	110	0.007	17.64	2401	6.68	6.3	21.4	42.4	12.55	
W 14	5/21/2014	15.55	B.11	3.71	100	0.007	16 07	2255	6.51	0.29	125.0	317	16.00	Meter not working. Used Jacob's meter for final maining.
W 19	1/17/2014	14.57	DHY				-	_					- 7676	
W-18	5/21/2014	9.52	200		100		14-66	6.358	697	0.00	79220		15 35	
							194.000	(0.304)	5.690	181	120.8	466	11.25	Ran dry (\$9.53
W 19	1/17/2014	10.02	DRY				1307	4405	6.62	6.41	281.3	447	10.25	
W-19	2/13/2014	10.40					5.00	4380	5.04		-4/1-1	-		Water and the second se
W 19	2/26/2014	14.21		-			8.00	+2000	6.00					Water abouty, white not, no other, possible 3DMs
W 19	5/21/2014	10.21	-		150		14.47	4458	6.39	1.67	130.0	124		30Me present in purge water
w t											(1995)		31.33	Ran dry @ 10 22
99.1	5/21/2014	18.19	-		100		16.80	2214	7.35	1 14	110.2	>1000	18.35	Handry (ÿ 18 19
W.2	5/21/2014	17.17			100		17.00	1349	7.13	2.99	154.7	209	17.55	Ran cry (217 14
wa.	10/7/2013	9.47	DRY				20000	602						64001000000
W.3	5/21/2014	10.46	DRY	-			20.07	.3	6.25	6.66	120.5			Fump started 3948 Renicry at 1997. Day at 1100
						-							17.12	Ren dry Q 10.46.
V/ 4	13/7/2013	10.54		當	*00		20.12	2491	6.83	0.46	132.0	E3	11.00	
W 4	521/2014	11.16			150		15.23	1686	7.22	1.56	110.5	317		Han ory (D.11.16. Sampled on 5/22/2014)
acs Well	6/15/2012	12/30%	11123	0.19	100	0.14	18.24	786	7.17	0.16	27.3			

Notes:

Militars person is:

Depress ceres:

Depress resident Contractor

Militars person in professional

Militars resident

Militars person

Militars

Militars

Militars

Militars

Militars

Militars

Militars

Militars

JAM 573-14 50W 8-230-14

6.016

-		_						84	ren Mia Raino		1000				injection #1			tractor f		100	Appetress #1			trject on 84			ir protect will	
(Tear or ID	Row	trigoction Date	Total Segre (F)	Doym to Eadrock (N)	Depth to Refused (R)	Min Barrin	TOWargar;	Mater (gal)	MartCO ₁ (Res)	MarrCO, (gal)	Total Values or respect 2084 NaMCO, hypotest (gal)	Tungs Volume of concentration 3DNs bysolant (gar)	Total Volume of concestrand mattice, injuried rights	Mr. WET JOH	Statute of History 20Me System (get)	Supramed Pressure 3940	Depth of Notes from (M) (M)	Vijkurus of vilkate 30Me Tajac ted (gar)	Sustained Programs (glic)	Disprit of these terms (#1) (#1)	Volume of Historia School Injectorii (gar)	Sussiant Pressure (psi)	Depth of Injection (P) (P)	Volume of ridule 10 Mg Injected 19 VI	Antend Pettor 34	Depth of Injection (ft) dhs	Values of client XVAIs tracted (g.at)	Sustain Properties (pro)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ow with L.S.	0.000m 0.000m 0.000m 0.000m 0.000m 0.000m 0.000m 0.000m	10.00	1.	2,210100			200	777777777777777777777777777777777777777	11	000000000000000000000000000000000000000				40 40 A1	24 24 24 25 26 27 27 28 28 28 28	2 2 4 71 71 21	A TITTE A	21111111	27538446	NATIONAL STATES	71 71 71 71 71 71 71	£	25.44.55	2 to 2 to 2 to 2 to 2 to 2 to 4 to 4 to	102	14	23
		ection Pierris								Total Ingressed	2643	136															Name of	
PLOT		Inciden Patrola		W		10	10.5	255	S 190 F	I tostewood,	1 201	1	6.29		100		11.9	28.6										
ING INJ	ection with	LL.S											1000		-									7120				
		7 1 7 12 2 1 2 14 2 2 3 14 2 2 3 14 2 2 3 14						100.2		Total Residen.	5774		4,91		277 244	4			*									
7 44.	Number of 14	(action Points)						# 10 10 11 10 12		Total Injection	242 213 214 214		6.78		71 172 72 73	1444								1				
7		POTA 1927a parjus Parts	8					57 64		Total Most half.	272 272 1 1994 273 273	**	2.00		1 20	7.												
	Nacional at the	gasjous Paleon.				1 %		1		Type I special.	1 606		1.00		17.7 27.7	1 5								1				
		12 3/14 13 3/14 14 3/1			ON CONTROL			10 mm	11 * U * U * U * U * U *	2017202020	111111111111111111111111111111111111111		1000	4.6260000	2.5.1.1.2.2.3			900 900 900 900 900 900										
		120,016 121,016 120,016 120,016 120,016 120,016 120,016 120,016						0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	140000000000000000000000000000000000000	Total Squares	10 40 40 40 40 40 40 40 40 40 40 40 40 40	10	111 111 111 111 111		1 122													
0.4 (4) (8) (8) (8)	000	5.91170 7.91702 7.91702 7.9702 7.270	10	26245	11111	*****	1	1	· ·		120		12		71			17.3										
100 100 100 100 100 100 100 100 100 100		2 (2%) 2 (2%) 2 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)	17.2 17.2 17.1 10.1	1000		# # P T T T T T T T T T T T T T T T T T		11		15			A.89		1000	5050500												
11 		Ingestion Points	4	1	12	1 :		- 22		Total Injection	- 27				5	2		1										
9							35		0	West House		W. 8	W (E)												September	MINTERS IN	u	

Table 6 3DMe Injection Summary RBTC LDB #1, Leitchfield, Kentucky

AMEC Project 6251-12-1002

ROW	Number of Injection Points	Total Volume of Diluted 3DMe Injected (gal)	Total Volume of Concentrated 3DMe Injected (gal)	Total Volume of Concentrated NaHCO ₃ Injected (gal)
В	4	806	8	0.91
С	2	405	5	0.20
D	8	1974	152	2.39
E	4	820	17	1.03
F	18	4949	217	4.39
G	12	2425	21	5.26
Н	2	404	4	0.61
Total	50	11784	424	14.79

Prepared by JAM 02/25/2014 Checked by SMD 6/23/2014

Notes:

gal Gallon

		Tax			
Buckeye					
119-	COM	61 Let	-	480	-

Table 8 BOS 100 Injection Summary RBTC LDB #1, Leitchfield, Kentucky AMEC Project 6251-12-1002

Zone	Area (sq ft)	Number of Injection Points	Total BOS 100 Quantity Injected (Ibs)
1B	935	16	845
2	990	19	1300
6	1990	16	455
7	990	21	2220
Ī	Total	72	4820

Prepared by JAM 02/25/2014 Checked by SMD 6/23/2014

Notes:

sq ft

Square Feet Pounds

lbs

Table 9 Trend Analyses for TCE, Cls-DCE and VC, 2012-2014 RBTC LDB E 1 and Analyse Rend-ty

				Trichio	roethene (TCF)			- 11			cis-1	,2-Di-chile	roethene	cis-1,2-D0	E)						Vin	yl Chloride	(VC)			
evno:	MCL	0.008	mg1.	11 M, rough	Constitution (100			- 1	MCL	0.07	mul.							MCL	0.002	rgl				vanuerora :		
Sample				Feb-13	Charge*	Apr-17 (Change!	May 14 0	harge*	à.m-12	Dec: 12	Change	Feb-13	Owgr'	Jun-13	Crange"	May-14	(Dunge)	Jun-12	Die: 12	Change"	Fety-13	Charge"	hr-13	Crange*	May-14	Change*
		n-one							-									950									
W-180	Montering Well	26	-27.7%	22	-48.5%	34	-20.9%	12	-97.2%	33	2.0	-36.4%	1.0	-2.1%	2.7	-16.2%	0.18	-94.1%	0.50	0.125	-75.0%	0.25	40.0%	0.036	-62.8%	0.024	-95.25
NV. 18	10	0.29	40.6%	0.11	40.7%	6.20	-99.6%	8.15	-00.7%	4.0	B 14	47.2%	0.071	-08.6%	0.069	-91.4%	0.097	460,1%	0.50	0.027	44.8%	6.021	-86.P%	0.011	-97,8%	0.011	-67.81
7N 2A	64	0.070	40.5%	0.11	48.8%	0.16	419.8%	0.29	-00.6%	5.5	0.012	-96.5%	0.068	458,8%	0.20	-96.6%	6.37	40.7%	0,70	0.0063	-91.8%	0.029	-01.0%	0.019	-95.7%	0.015	40.5
W 29	63	0.23	40.6%	8.17	-98.7%	0.22	-99.7%	0.54	48.1%	16	6.43	47.3%	0.37	42.7%	0.42	47,4%	12	-80,4%	2.0	0.026	40.7%	0.079	-01.1%	0.24	-88.0%	8.75	-87.51
UN9.25	28	0.48	-81.5%	8.54	-75.2%	1.1	47.7%	0.68	.75.8%	0.78	0.079	-86.9%	0.073	-90.6%	8.12	-84.6%	0.073	-00.6%	0.6028	6,0010	475,5%	0,0025	-10.7%	0.0014	-42.8% -66.8%	0.010	457,1
MW 76	39	0.067	49.9%	8.47	49.6%	0.10	400.0%	0.077	-96.9%	10	0.064	-98.4%	8.871	-96.3%	0.064	-80.6%	0.097	-99.0%	0.80	0.0867	-98.3%	0.013	47.4%	8 014	-06.8%	0.011	40.1
150.77	58	0.063	-08.5%	0.10	-91.1%	6.0078	-100.0%	0.11	-00.5%	.12	9.18	-08.5%	8.26	-08.3%	0.11	46.9%	0.56	-87.0%	1.6	0.540	-07.5%	8.052	+106.3%	0.0017	6.3%	0.0012	45.0
NW-21	9.030	0,00058	-58.1%	0.00060	-95.2%	0.000003	-67.0%	0.01052	-66.5%	0.027	2 001	46.4%	0.0016	44.1%	0.0032	48.1%	0.0017	40.7%	0.0016	0.0010	27.5%	0.0033	1108.2%	0.0017	6,350	E. 1001.2	43.6
	935	110000	3.4	6.20	3.4	0.22	147	6.31	WA	NA.	0.042	5.4	0.045	194	0.057	SA	8.10	Sell	NA.	0.0050	15/4	0.0000	NA:	6.0023	·A.	8.814	. 6
19-5	14.2	0.30	49.5%	0.14	-98.5%	0.84	-07.0%	0.21	45.3%	12	0.12	46.5%	8.17	48.6%	0.13	45.6%	6.22	-86.7%	0.00	0.022	47.8%	0.00090	-09,0%	0.012	-08.8%	0.0091	489.11
A-4	78	0.18	48.6%	0.26	-00.0%	0.29	47,8%	8 639	-30.7%	10	8.17	46.3%	0.25	47.5%	0.16	-06.4%	0.022	-99.8%	1.25	0.011	40,1%	0.021	-102,1%	0.0005	49.2%	0.0003	-90.5
	13	0.027	-100.0%	4.867	-00 044	6.636	-60 9%	0.0009	-100.0%	17	0.0035	~100.0%	6.625	463%	0.012	-90,9%	0.0028	+100.0%	0,50	0.00032	49.9%	0.00070	-100.1%	0,00050	-94.9%	0.00060	-00.9
79-7	62	0.074	46.6%	0.079	49.5%	0.27	-90.6%	0.70	46.9%	5.8	unur	-90.4%	0.12	47.9%	0.44	-92.1%	0.10	-90.0%	0.50	8 9084	-98.3%	0.025	-95.0%	4.821	+45.8%	8.834	41.2
TW- I	77	1.1	48.5%	11	48.5%	3.3	-65.4%	3.9	44.5%	10	0.82	-01.0%	1.6	40.0%	1.6	-80.0%	8.85	-81.7%	2.8	6.13	45.4%	8.14	-05.0%	0.042	-07.1%	0.004	407.01
TWO	94.5	0 17	MA	0.54	5-0	6.60	43	4.5	50.4	5.4	8.879	5.4	0.52	*A.	0.48	14	2.0	No di	h/4	8.052	1/4	0.19	5/5	E 17		1.0	
Average	Change		46.4%		43.8%		49.4%		48.9%			-81.0%		-00.0%		-88.9%		-95.7%	-	- Live	77.8%		.71.Ph		44.Ps		43.9
						-			-																		
Bogetom)	dation Monitors	d Mega p	-SI Sh	O 13	49.65	0.14	40.1%	21	48.7%	9.1	10	+47.8%	33	+221.6%	30	229.7%	5.6	-30.5%	9.40	0.29	21.5%	8.58	*25.0%	2.4	710,0%	21.4	290,0
West.	9.1	4.30	40.8%	0.23	47.2%	0.16	48.0%	0.025	40.7%	8.75	7.9	4308.6%	1.4	197.2%	1.0	121,4%	2.0	+181,7%	0,125	0.036	31,2%	8 623	-103.2%	8.038	49.0%	0.063	-53.6
MM-17	1 15	0.50	-04.7%	0.20	47.3%	8.20	-87.9%		-100.0%	41	12	+192,7%	14	+261.5%	76	597,8%	0.025	-09.4%	0.41	0.54	+21.7%	1.2	+192,7%	1.0	143,8%	0.0094	417
189-72	111	0.050	-90.1%	6.043	49.6%	0.034	-89.7%	0.0126	-91.9%	0.63	2.8	+237,3%	4.5	· H54.2%	1.0	679.7%	1.0		0.011	8.035		5.091	1727.3%	0.098	790.9%	8.54	4990.9
Acres			40.75		46.5%		40.1%		-47.3%	100000		209.1%	3-3550	261.1%		341.6%		M.2%	100000		37.8%	S	210.4%	_	403.8%		1277.4
-									-	-									1					5 100000			
UN-4	Junes Menders 8 12	0.026	40.0%	0.022	42.1%	0.0044	-95.6%	0.00087	-01.5%	11	1.1	-36.7%	9.00	41.3%	0.029	-04.1%	0.0025	-90.3%	0.29	8.13		0.16	-37 P%	0.0000	47.6%	0.00000	-940 B
MW.7	1.0	0.0000	-00.7%	0.00000	-100.0%	6.40050	-100.0%	0.00050	-10C.0%	0.76	0.49	-35.6%	0.052	403.2%	0.0079	-09.0%	0.00079		0.019	0.011		0.0039	-79.8%	0.0013	-72.1%	0.0016	401.0
\$76.15	0.032	0.0029	-81.2%	0.0038	48.1%	0,0036	-38.6%	0.0018	34 A%	0.046	0.036	47,8%	6,038	-17.4%	0.024	47.8%	0.013		0.00050	0.00 16		9.0048	+710.0%	0.0024	300 Dtl	0.00070	40.5
MNV-15	0.50	8.021	45.2%	0.037	-82.6%	6 632	-93.6%	8 9679	-30.4%	2.0	0.42	46.0%	8 10	46.0%	0.76	-86.0%	0.016		0.031	0.040		0.12	/297,1%	0.071	129.0%	0.013	-58 1
100-14	0.00000	0.00050	No. Tree	0.00060	Now	0.00050	Acre	0.00050	No. 16	0.035	0.041	+17,1%	6.035	10%	0.023	-34.3%	0.021	-40.0%	0.0036	0.0021		0.0023	-66.9%	0.0027	418	0.0017	-86.6
126 H	0.0046	0.00050	-09.1%	0.00000	-86.1%	0.00058	-29.1%	0.00044	400.4%	0.0011	0.00050	-54.5%	6.00060	-64.5%	0.00000	-64.5%	0.00040		0.00035	6.00052			467.8%	0,00060	42.8%	0.00056	2100.0
656.21	0 11	6.026	-86.7%	0.0668	464,1%	90000	-67.6%	8.15	11.D'm	0.000	0.043	13.6%	8.12	+50.0%	0.17	+112.5%	0.93		3,00000	8 6034			+830.0% +110.4%	8.0036 8.0035	426.6%	8.24	4 30%
N/A-71	1.1	0.11	-90.0%	0.011	45,4%	0.012	-98.5%	0.628	47.5%	0.068	0.77	+1007.4%	0.69	1014.7%	0.22	+225.9%	0.17	+91,25	0.00016	0.0050	-800.15	0.0013	714 P	0.0015	115.6%	1.24	4702.1
Armigh	Change		40.F)		41.8%		-91.9%		-83.0%	_	_	102.5%	-	67.9%	_	7.8%		M.FV	_		118.47	-	/sars	_	1115.4%		3704.1
	reow Smetre	WyDa																									
Miscella	8.0017	8 5040	+2012.0%	5,00065	-70.59%		-70 86%	0.00000	-70.50%	0.00050		Vrte	0.00000	None	5.00060	New	0.00050	North	0.00080	8.00000	North		+1800.0%	0.0000.0	+1855.65	0.00050	No.
Wacela	0.095	0.20	+130.5%	8.21	+142,1%	0.36	+215.85	0.63	+563.2%	0.053	6,12	+120LA%	0.20	+429.2%	0.26	+300,8%	0.76		0 1045	0.012			-1500,016	E 0048	40.8%	0.0055	-76.0
		0.85	41.6%	1.7			46.00%	7.8		0.83	6.33	40.7%	8.75	-12.0%	8 40	-61.0%	0.36		0.025	0.8079				E 12		8.13	
170	2.2	0.0176	43.4%	0.0017					42.83%	4.11	6.21	+80,8%	0.46	+376.4%	0.13	+40,0%	2.2		0.0076	0.042			+2:20.0%	0.0017	41.03	0.021	-110
0%-1 0%-1 0%-20 1%-1	8.19			2.1	4115.4%	1.4			32312	8.71	0.21	-66.3%		+610%	0.00050	here	0.00000		0.00050	6,00050	300			0.00050		0.00050	
699-7 999-7 999-29 690-7 640-758	13	0.45	45.4%					0.00088	None	0.00050		200		-15.5%	6.0010	415	0.00060		0.00050					0.00000		0.00060	
699-2 999-2 999-29 690-75 600-75 600-6	8.19 1.3 0,0000	0.00000	No. or all	0.00050	None	6.00000							II DODAY	-01.0%	8.71	-62.7%	8.4		1.1					0.97	+1.0Pk	1.60	
099-2 099-2 099-2 096-3 096-3 096-6 096-6 096-6	9.19 1.3 0.0000 6.0014	8.45 0.00060 0.0012	14.25	6.00072	48.0%	0.00094	32,045		421%	0.0011	0.00	-34 55.					0.1		0.0020							0.00011	-74
099-210 099-210 099-210 099-210 099-20 099-20 099-20	0.00000 0.00000 0.0004 0.13	0.45 0.00060 0.0012 8.822	14.3% 43.1%	6.90972 6.876	48.8%	0.00094	32.965 48.465	8 625	40.6%	15		34.0%	111		412	0.356						0.027	×1250.0%	0.0036	485.0%		
099-200 099-200 099-200 099-200 099-200 099-200 099-200 099-300	8.19 1.3 0,0000 0.0014 0.13	0.45 0.00000 0.0012 8.822 6.10	44.9% 40.1% 42.4%	6.00072 6.876 6.964	48.8% 41.5% 48.5%	0.00094 0.015 0.058	32 M1 48.461 -72.361	8 625	40.8% 41.4%	0.12	0.058	-617%	9.14	*16.7%	0.00050	0.2%			0.00000					0.0000		0.00060	
099-20 099-20 199-20 199-20 699-20 099-20 099-3 099-3 099-3	8.16 1.3 0.00000 0.0014 0.13 8.21 0.0003	0.45 0.00000 0.0012 8.822 6.10 0.00000	42.4% 42.4% 42.4%	6.90072 6.976 6.964 6.20050	41.5% 41.5% 40.5%	0.00094 0 015 0 058 0.00050	32 M1 48.461 -72.381 -92.061	8 625 8 681 0.00050	41.4% 41.4% 48.1%	1 S 0 12 0.0012	0.00050	-61.7% -61.8%	8.14	4167%	0.00050 0.00050	0.2% 44.4% -71.0%	0.00031	44.4%		0.00050	100	6.00000	None		Servi	0.00060	14
099-20 099-20 199-20 199-20 689-20 689-20 689-3 689-3 689-3 689-3	8.16 1.3 0.00000 0.0014 8.13 8.21 0.0014	8 45 0.00060 0.0012 8 822 6 10 0.00050 0.00040	42.45 42.15 42.15 42.15	6.90072 6.976 6.964 6.20050 0.00064	48.8% 41.5% 40.5% 40.1% 41.4%	0.00094 0.015 0.00050 0.00050	32 161 40.461 -72.361 -02.061 -01.421	8 625 8 681 0.00050 0.00050	40.8% 41.4%	0.12	0.018 6.00050 0.0031	-61.7%	8.14 8.00080 0.0031	*16.7%	0.00050	44.4%	0.00000	-01.0%	0.00000	6.00050	37.55	G.00000 G.00000	-07.5%	0.00030	-37.85	0.00050	-37
000-200 000-200 000-200 000-200 000-200 000-200 000-30 000-30 000-30 000-30	8.16 1.3 0.00000 0.0014 8.13 8.21 0.0014 0.0016	8.45 0.00000 0.9012 8.822 8.10 0.00000 0.00000	42.1% 42.1% 42.4% 42.1% 45.0%	6.90072 6.974 6.964 6.00060 0.00064 0.00064	48.8% 41.5% 40.5% 40.1% 47.4%	0.00094 0 915 0 958 0.00050 0.00054 0.00054	32 861 48.461 -72.365 -42.061 -61.475 -47.371	0.00050 0.00050 0.00050	46.8% 41.4% 48.1% 44.3%	1 S 0 12 0 5012 0 5012	0.0050 0.0050 0.0031 0.0092	61.7% 66.6% 60.0%	8.14 8.00080 0.0031 0.00050	#16.7% 44.4% -50.0%	0.00050	-71.0%	0.00031	40.0% 40.0%	0.00000	6.00050 6.00050 6.00000	37.5%	6.00000 6.00000 8.00007	-07.5% -07.5% -07.5%	0.00050 0.00050 0.00050 0.00050	1278 137,815 1274 138,315	0.00060 0.00060 0.00060	-57 -58
099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3	8.16 1.3 0.00000 0.0014 8.21 0.0014 0.0014 0.0006 0.0006	8 45 0.00000 0.0012 8 822 8 10 0.00000 0.00000 0.00000	42.1% 42.1% 42.4% 42.1% 45.0% 47.4% 40.0%	6.90072 6.976 6.964 6.20090 6.00094 6.00090	48.8% 41.5% 40.5% 40.1% 41.4% 47.4%	0.00094 8 915 8 958 0.00050 6.00054 0.00064	32 001 40.403 -72.365 -42.565 -41.435 -47.575 -36.301	8 625 6 681 6 00050 9 000000 9 000000	41.4% 41.4% 44.3% 47.6%	1 S 0 12 0 0012 0 00050 0 00050	0.0050 0.0050 0.0031 0.0092	41.7% 44.4% 40.0%	8.14 8.00080 0.0031 0.00080 0.011	44.4% -50.0%	0.00050 0.0018 0,00060	-71.0% -71.0%	0.00001 0.001 0.0000	40.6% 40.6% 7.7%	0.00000 0.00000	6.00050 6.00050 6.00050 6.00040	1 1076 37,5% 1 1076 1 171,8%	6.00000 6.00000 8,00000	-07.5% -07.5% -07.5%	0.00000 0.00000 0.00000	1278 137,815 1274 138,315	0.00060 0.00060 0.00060 0.0009	-57 -57 -58
099-7 099-7 099-7 099-7 099-7 099-8 099-8 099-8 099-8 099-5 099-7 099-7 099-7 099-7	8.19 1.3 0.00046 8.0014 9.13 5.0015 0.0016 0.00060 8.00060	8 45 0.00000 0.9012 8.877 8.10 0.00000 0.00000 0.00000	42.45 42.45 42.15 42.15 45.05 47.45	6.90072 6.976 6.964 6.20050 6.00054 6.00050 6.00050	48.8% 41.5% 48.5% 48.1% 47.4% 47.4%	0.00094 8 915 8 958 0.00050 0.00054 0.00050 0.00077	32 M1 48.461 -72.365 -42.661 -41.435 -47.375 -36.301	8 625 8 881 0.00050 0.00050 0.00050 0.00050	40.8% 41.4% 44.3% 47.8%	1 S 0 12 0 0012 0 00050 0 00050	0.048 0.0050 0.0031 0.0092 0.0050	-81,7% -81,0% -81,0% -80,0%	0.00050 0.00050 0.00050 0.00050	*16.7% 44.4% -50.0% -15.4% -15.4%	0.00050 0.0018 0.0060 0.0062	-84.4% -71.0% force -60.0%	0.00000 0.0011 0.00000 0.011	-84.4% -80.6% -7.7% -7.7%	0.00000 0.00000 0.00000 0.00000	6.00050 6.00050 6.00050 6.00050	1 127.95 1 127.95 1 127.95 1 127.95	6.00050 6.00050 8.00071 6.00071	42.1% 43.1% 43.1% 5000 43.0%	0.00050 0.00050 0.00050 0.00050 0.00050 0.00050	42749 427.85 406.25 4274 42.15	0.00050 0.00050 0.00050 0.0005 0.00050 0.00050	-57 -57 -58 -58 -74
099-7 099-7 099-7 099-7 099-7 099-7 099-7 099-7 099-7 099-7 099-7 099-7 099-7 099-7	8.16 1.3 0.00000 0.0014 8.21 0.0014 0.0014 0.0000 0.0000	8 45 0.00000 0.9012 8.922 8.10 0.00000 0.00000 0.00000 8.00000 8.00000	42.1% 42.1% 42.4% 42.1% 45.0% 47.4% 45.0%	6.90072 6.976 6.964 6.20050 6.00054 6.0045 9.00050	48.8% 41.5% 40.5% 40.1% 61.4% 47.4% 40.0%	0.00094 0.915 0.00050 0.00050 0.00054 0.00050 0.00050 0.00050	32 161 48.463 -72.365 -42.065 -41.435 -47.375 -36.361	8 625 8 881 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050	40.8% 41.4% 46.1% 41.6% 41.6% N. V	1.5 0.12 0.0012 0.00050 0.00050 0.00050	0.0050 0.0050 0.0031 0.0092 0.0050 0.0050	41.7% 46.8% 46.8% 46.8% 46.8%	8.14 6.00080 0.0031 0.00050 6.00050 6.00050	*16.7% 44.4% -50.0% -15.4% -15.4% -22.5%	0.00050 0.0018 0,00060 0.0060 0.0060	-84.4% -71.0% North -60.0% North	0.0003 0.001 0.0008 0.01 0.0005		0.00000 0.00000 0.00000 0.00000	0.00050 6.00050 6.00050 0.00050 8.00050 8.00050	77.5% 77.5% 77.5% 77.5% 1 679 433.7%	6.00000 6.00000 6.00007 6.00007 6.8027 8.8027	43.1% 43.1% 43.1% Nove 43.0% 20.2%	0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000	-37,85 -37,85 -30,25 -40,25 -41,15 -10,35	0.00050 0.00050 0.00050 0.00050 0.00050 0.00050	-57 -57 -58 -12 -72
099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3 099-3	8 19 0,00000 0,0001 0 13 0 21 5 0063 0,0014 0,0006 8 8699 0,00060 0 827	8.45 0.00000 0.0012 8.872 6.10 0.00000 0.00000 0.00000 8.00000	14.2% 42.1% 42.4% 42.1% 45.6% 47.6% 47.6% 47.7%	6.90077 6.976 6.964 6.20050 6.00050 6.0045 0.00050 6.0045	41.5% 41.5% 40.5% 40.1% 41.4%	0.00094 0.915 0.00050 0.00050 0.00054 0.00050 0.00050	32 (41) 40,461 42 (41) 41,421 47,371 36,301 40,731 41,731	8 625 8 681 0.00050 0.00050 1.00077 0.00077 0.00077	40.8% 40.1% 44.3% 47.6% 414.0% N : 4	1.5 0.12 0.0032 0.00050 0.00050 0.00050 0.00050	0.0548 0.0050 0.0031 0.0032 0.0050 0.0050	41.7% 44.4% 40.0% 40.0% 40.0% 417.8%	8.14 6.00080 0.0031 0.00050 6.00050 6.00050	#16.7% 44.4% -50.0% -15.4% -15.4% -41.2%	0.00050 0.0018 0.0060 0.0060 0.0060	44.4% -71.0% form 460.0% form -36.6%	0.00030 0.0013 0.00030 0.013 0.00050 0.013		0.00000 0.00000 0.00000 0.00000 0.00000	6.00050 6.00050 6.00050 6.00040 9.00050 8.00050	77.5% 77.5% 77.5% 77.5% 1 679 433.7%	6.00000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000	42.1% 42.1% 5076 43.1% 5076 43.0%	0.00050 0.00050 0.00050 0.00050 0.00050 0.00050	-37,85 -37,85 -30,25 -40,25 -41,15 -10,35	0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050	-57 -57 -58 -12 -12 -77

Prepared by 1931 1111114

SOURCE: USGS 7.5' TOPOGRAPHIC QUADRANGLE MAP, LEITCHFIELD, KENTUCKY, 1967

TOPOGRAPHIC MAP

ROBERT BOSCH TOOL CORPORATION LEITCHFIELD DIVISION - BUILDING #1 LEITCHFIELD, KENTUCKY

PROJECT NUMBER: 6251-12-1002

SCALE	1" = 2000"
DATE	03/28/2012
DRAWN BY	KOR
APPROVED BY	SMD

FIG. 1

APPENDIX A

Laboratory Analytical Report – Groundwater Samples October 2013

12065 Lebanon Rd. Mt. Juliet, IN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tex I.D. 62-0814289

Est. 1970

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexington 2456 Fortune Drive; Ste 100 Lexington, KY 40509

Report Summary

Thursday October 17, 2013

Report Number: L661920 Samples Received: 10/08/13 Client Project: 6251-12-1002

Description: RBTC - Leitchfield, KY

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Leslie Newton , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979, IA Lab #364

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-76/-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Ms. Sarah Donaldson AMEC Brv. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

ESC Sample # : L661920-01

Date Received : October 08, 2013 Description : RBTC - Leitchfield, KY

Site ID :

Sample ID : MW-5

Project # : 6251-12-1002

Collected By : Jacob A. Morris Collection Date : 10/07/13 16:35

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
IOC (Total Organic Carbon)	260	0.97	5.0	mg/l				5
Volatile Organics								
Acetone	U	2.5	13.	210 / 2			NWH I S	
Acrolein	Ŭ	2.2	13.	mq/1		8260B	10/10/13	250
Acrylonitrile		0.47	2.5	mg/l		82603	10/10/13	250
Benzene	Ü	0.083	ć•⊃	ma/1		8260B	10/10/13	250
Bromobenzene	100		0.25	mg/l		8260B	10/10/13	250
Bromodichloromethane	Ü	0.088	0.25	mg/l		8260B	10/10/13	250
Bromoform		0.095	0.25	mg/1		82603	10/10/13	250
Bromomethane	Ų.	0.12	0.25	mq/l		8260B	10/10/13	250
n-Butylbenzene	U	0.22	1.3	mg/l		8260B	10/10/13	250
sec-Butylbenzene	U	0.090	0.25	mq/1		82603	10/10/13	250
sec-butyibenzene	U	0.091	0.25	mg/1		8260B	10/10/13	250
tert-Butylbenzene	U	0.10	0.25	ma/1		8260B	10/10/13	250
Carbon tetrachloride	U	0.095	0.25	mg/1		8260B	10/10/13	250
Chlorobenzene	U	0.087	0.25	mg/1		8260B	10/10/13	250
Chlorodibromomethane	U	0.082	0.25	mg/1		82603	10/10/13	250
Chloroethane	U	0.11	1.3	mg/1		8260B	10/10/13	250
2-Chloroethyl vinyl ether	ממטט	0.75	13.	mg/1		8260B	10/10/13	250
Chloroform	U	0.081	1.3	mg/1		82603	10/10/13	250
Chloromethane	U	0.069	0.63	mg/l		8260B	10/10/13	250
2-Chlorotoluene	U	0.094	0.25	mg/1		8260B	10/10/13	250
4-Chlorotoluene	U	0.088	0.25	mg/1		8260B	10/10/13	
1,2-Dibromo-3-Chloropropage	Ċ	0.33	1.3	mg/1		82603	10/10/13	250
1,2-Dibromoethane	Ü	0.095	0.25	ma/1		8260B		250
Dibromomethane	Ŭ	0.086	0.25	ma/1			10/10/13	250
1,2-Dichlorobenzene	ŭ	0.087	0.25			8260B	10/10/13	250
1,3-Dichlorobenzene	ŭ	0.055		mg/1		8260B	10/10/13	250
1,4-Dichlorobenzene	Ü	0.053	0.25	mg/1		8260B	10/10/13	230
Dichlorodifluoromethane	Ü		0.25	mg/1		82603	10/10/13	250
1,1-Dichloroethane	0.067	0.14	1.3	mg/l		82603	10/10/13	250
1,2-Dichloroethane	U.U67	0.065	0.25	mg/l	J.	8260B	10/10/13	250
1,1-Dichloroethene		0.090	0.25	mq/l		8260B	10/10/13	250
cis-1,2-Dichloroethene	0.11	0.10	0.25	mq/1	13	8260B	10/10/13	250
trans-1,2-Dichlorcethene	18.	0.065	0.25	mg/l		82603	10/10/13	250
trans-1,2-Digniorcethene	Ü	0.099	0.25	mg/l	14	82603	10/10/13	250
1,2-Dichloropropane	U	C.076	0.25	mg/1		8260B	10/10/13	250
1,1-Dichloropropene	Ü	0.088	0.25	mq/1		8260B	10/10/13	250
1,3-Dichloropropane	Ü	0.092	0.25	mg/l		82603	10/10/13	250
cis-1,3-Dichloropropene	Ü	0.10	0.25	mg/1		82603	10/10/13	250
trans-1,3-Dichloropropere	Ü	0.10	0.25	ma/1		82603	10/10/13	250
2,2-Dichloropropane	U	0.080	0.25	mg/l		8260B	10/10/13	250
Di-isopropyl ether	Ü	0.080	0.25	mq/1		8260B	10/10/13	250
Ethylbenzene	U	0.096	0.25	ma/1		82603	10/10/13	250

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = POL = EQL = TRRP MQL
Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebacon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Site ID :

Project # : 6251-12-1002

Ms. Saran Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

ESC Sample 4 : L661920-01

Date Received : October 08, 2013 RBIC - Leitchfield, KY

MW-5

Collected By : Jacob A. Morris Collection Date : 10/07/13 16:35

Units Qualifier Method Date Result MOL RDL 82603 10/10/13 Hexachloro-1,3-butadiene Isopropylbenzene C.064 mg/l 0.25 10/10/13 8260B 0.082 0.088 0.98 0.25 mq/1250 mg/1 8260B 10/10/13 p-Isopropyltoluene 2.5 250 250 D-Isopropyttoltene 2-Butanone (MEK) Methylene Chloride 4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether mq/1 8260B 10/10/13 8260B 0.25 mg/110/10/13 82603 250 2.5 10/10/13 0.54 mq/1 0.092 82603 10/10/13 mg/1 8260B 250 1.3 ma/1 Naphthalene 0.087 8260B 10/10/13 250 mq/1n-Probylbenzene 8260B 8260B Styrene
1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
1,1,2-Trichlorotrifluoroethane 10/10/13 mq/1250 10/10/13 0.096 mg/18260B 10/10/13 0.15 0.076 0.093 ma/1 8260B 10/10/13 0.25 0.25 ma/1 10/10/13 8260B 250 mg/1 Tetrachloroethene 8260B 8260B 0.20 mq/1 10/10/13 1.3 Toluene 1,2,3-Trichlorobenzene 10/10/13 0.058 mq/18260B 250 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 10/10/13 0.25 0.054 mg/1 8260B 0.080 mg/18260B 10/10/13 250 250 1,1,2-Trichlorcethane mg/1 0.10 0.25 mq/182603 10/10/13 Trichloroethene 250 8260B 10/10/13 Trichlorofluoromethane 0.30 mg/18260B 10/10/13 1,2,3-Trichloropropane 0.63 0.20 ma/1 8260B 10/10/13 0.093 0.25 ma/11,2,4-Trimethylbenzene 0.080 82603 10/10/13 250 mg/1 1,2,3-Trimethylbenzene 8260B 8260B 10/10/13 10/10/13 250 250 1,3,5-Trimethylbenzene Vinyl chloride mg/10.065 mq/1Xylenes, Total Surrogate Recovery 10/10/13 250 8260B 0.26 mq/1Rec. Toluene-d8 Dibromofluoromethane 4-Bromofluorobenzene 104. 82603 10/10/13 82603 10/10/13 7 Rec. t Rec.

U = ND (Not Detected)

MDL - Minimum Detection Limit = LOD = TRRP SDL RDL = Reported Detection Limit = LOO = PQL = EQL = TRRP MQL

Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Project # : 6251-12-1002

REPORT OF ANALYSIS

October 17, 2013

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

ESC Sample # : L661920-02

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

Site ID : Sample ID MW-8

Collected By : Collection Date : Jacob A. Morris 10/07/13 15:05

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TOC (Total Organic Carbon)	980	3.9	20.	mq/l		9060A	10/14/13	20
Volatile Organics								
Acetone	0.55	0.50	2.5	ma/1		8260B	10/10/13	= 0
Acrolein	Ü	0.44	2.5	mg/1	24	8260B	10/10/13	
Acrylonitrile	Ū	0.094	0.50	mg/1		8260B	10/10/13	
Benzene	ŭ	0.016	0.050	ma/1		8260B		
Bromobenzene	Ĭ.	0.018	0.050	mg/1		8260B	10/10/13	
Bromodichloromethane	Ŭ	0.019	0.050	mg/1		8260B	10/10/13	
Bromoform	Ü	0.023	0.050	mg/1		8260B		50
Bromomethane	Ü	0.043	0.25	mq/1		8260B	10/10/13	
n-Butyloenzene		0.018	0.050	mg/1		8260B	10/10/13	5.0
sec-Butylbenzene	U	0.018	0.050	mg/1			10/10/13	50
tert-Butylbenzene	ĭ	0.020	0.050	mg/l		8260B 8260B	10/10/13	50
Carbon tetrachloride	7	0.019	0.050	mg/1			10/10/13	50 50
Chlorobenzene	Ü	0.017	0.050	mq/l		8260B	10/10/13	
Chlorodibromomethane	ŭ	0.016	0.050	mq/1		8260B	10/10/13	50
Chlorcethane	Ü	0.023	0.25	mg/1		8260B	10/10/13	50
2-Chloroethyl vinyl ether	1.	0.15	2.5	mg/1		82603	10/10/13	50
Chloroform	Ü	0.016	0.25	mg/1		8260B 8260B	10/10/13	50
Chloromethane	Ŭ	0.014	0.23	mg/1			10/10/13	50
2-Chlorotoluene	ŭ	0.019	0.050			8260B	10/10/13	50
4-Chlorotoluene	Ü	0.018	0.050	mg/l		8260B	10/10/13	50
1,2-Dibromo-3-Chloropropane	Ü	0.066	0.25	mg/1		82603	10/10/13	50
1,2-Dibromoethane	Ü	0.019		mg/l		8260B	10/10/13	50
Dibromomethane	Ü	0.019	0.050	mg/l		8260B	10/10/13	50
1,2-Dichlorobenzene	Ü		0.050	mq/l		8260B	10/10/13	50
1,3-Dichlorobenzene	Ü	0.017	0.050	mg/l		8260B	10/10/13	50
1,4-Dichlorobenzene	Ü	0.011	0.050	mg/l		8260B	10/10/13	50
Dichlorodifluoromethane	U	0.014	0.050	mg/1		82603	10/10/13	50
1,1-Dichloroethane	Ü	0.028	0.25	mg/1		82603	10/10/13	50
1,2-Dichloroethane		C.013	0.050	mq/1		8260B	10/10/13	50
1,1-Dichloroethene	ti G	0.018	0.050	mg/l		8260B	10/10/13	30
cis-1,2-Dichloroethene		0.020	0.250	mg/l		8260B	10/10/13	50
trans-1,2-Dichloroethene	1.3	0.013	0.050	mg/l		82603	10/10/13	50
	Ų	0.020	0.050	mq/1	14	82603	10/10/13	50
1,2-Dichloropropane 1,1-Dichloropropene	Ç	0.015	0.050	mg/l		82603	10/10/13	50
1,3-Dichloropropane	Ų	0.018	0.050	ma/1		82603	10/10/13	5.0
cie-1 3-Dighloroproper	ŗ	0.018	0.050	mg/1		8260B	10/10/13	50
cis-1,3-Dichloropropene	ğ	0.021	0.050	mg/l		8260B	10/10/13	50
trans-1,3-Dichloropropene	Ü	0.021	0.050	mg/l		8260B	10/10/13	50
2,2-Dichloropropane	Ü	0.016	0.050	mg/1		8260B	10/10/13	50
Di-isopropyl ether	C	0.016	0.050	mg/l		82603	10/10/13	50
Ethylbenzene	- [0.019	0.050	mg/1		82603	10/10/13	50

U = NF (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOO = PQL = EQL = TRRP MQL
Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

ESC Sample # : L661920-02

October 17, 2013

Site ID :

Date Received : October 08, 2013 Description : RBTC - Leitchfield, KY

: MW-8 Sample ID

Project # : 6251-12-1002

Collected By : Jacob A. Mcrris Collection Date : 10/07/13 15:05

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Hexachloro-1,3-butadiene	U	0.013	0.050	mg/l		8260B	10/10/13	50
Isopropylbenzene	U U	0.016	0.050	mg/1		8260B	10/10/13	50
p-Isopropyltoluene	U	0.018	0.050	mg/1		8260B	10/10/13	50
2-Butanone (MEK)	0.84	0.20	0.50	mg/1		8260B	10/10/13	50
Methylene Chloride	U	0.050	0.25	mg/1		8260B	10/10/13	50
4-Methyl-2-pentanone (MIBK)	U	0.11	0.50	mq/1		8260B	10/10/13	50
Methyl tert-butyl ether	U	0.018	0.050	mq/1		8260B	10/10/13	50
Naphthalene	U	0.050	0.25	mg/l		82608	10/10/13	50
n-Probylbenzene	U	0.017	0.050	mg/1		82603	10/10/13	50
Styrene	U	0.015	0.050	ma/1		82603	10/10/13	50
1,1,1,2-Tetrachloroethane	U	0.019	0.050	mg/l		8260B	10/10/13	50
1,1,2,2-Tetrachloroethane	U	0.029	0.050	mg/1		8260B	10/10/13	50
1,1,2-Trichlorotrifluoroethane	U	0.015	0.050	mg/l		8260B	10/10/13	50
Tetrachloroethene	U	0.019	0.050	mg/l		8260B	10/10/13	
Toluene	Ü	0.039	0.25	mg/l		8260B	10/10/13	50
1,2,3-Trichlorobenzene	U	0.012	0.050	mg/l		82603	10/10/13	50
1,2,4-Tricklordbenzene	t t	0.011	0.050	mg/l		82603	10/10/13	
1,1,1-Trichloroethane	ť	0.016	0.050	mg/1		82603	10/10/13	
1,1,2-Trichloroethane	Ü	0.019	0.050	mg/1		8260B	10/10/13	50
Trichloroethene	0.047	0.020	0.050	mg/l	J	8260B	10/10/13	50
Trichlorofluoromethane	U	0.060	0.25	mq/1		8260B	10/10/13	50
1,2,3-Trichloropropane	Ü	0.040	0.13	mg/l		8260B	10/10/13	50
1,2,4-Trimethylpenzene	U	0.019	0.050	mg/1		8260B	10/10/13	
1,2,3-Trimethylbenzene	Û	0.016	0.050	mg/1		8260B	10/10/13	50
1,3,5-Trimethylbenzene	Ü	0.019	0.050	ing/1		82603	10/10/13	50
Vinvl chloride	0.12	0.013	0.050	mg/1		8260B	10/10/13	
Xylénes, Total	U	0.053	0.15	mg/1		8260B	10/10/13	50
Surrogate Recovery								
Toluene-d8	106.			Rec.		8260B	10/10/13	50
Dibromofluoromethane	99.3			* Rec.		8260B	10/10/13	50
4-Bromofluorobenzene	104.			7 Rec.		8260B	10/10/13	50

U = NF (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL = TRRP MQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Tebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tex I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

October 17, 2013

ESC Sample # : 1661930-03

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

Site ID :

Sample ID : MW-13

Project #: 6251-12-1002

Collected By : Jacob A. Morris Collection Date : 10/07/13 16:15

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TOC (Total Organic Carbon)	480	1.9	10.	mq/1		9060A	10/14/13	
Volatile Organics								
Acetone	0.20	0.10	0.50	mg/1		00.000		
Acrolein	Ü	0.089	0.50	ma/1	Ů.	82603	10/10/13	10
Acrylonitrile	Ü	0.019	0.10			8260B	10/10/13	10
Benzene	ŭ	0.0033	0.010	mg/l		8260B	10/10/13	10
Bromobenzene	ŭ	0.0035	0.010	mg/l		8260B	10/10/13	10
Bromodichloromethane	Ü	0.0038	0.010	mq/1		82603	10/10/13	10
Bromoform	Ü	0.0047	0.010	mg/1		8260B	10/10/13	. 10
Bromomethane	ĕ	0.0047		mq/1		8260B	10/10/13	10
n-Butylbenzene	ŭ	0.0036	0.050	mg/l		82603	10/10/13	10
sec-Butylbenzene	ŭ	0.0036	0.010	mg/1		82603	10/10/13	10
tert-Butylbenzene	t,		0.010	mg/l		8260B	10/10/13	10
Carbon tetrachloride	ŭ	0.0040	0.010	mq/l		8260B	10/10/13	10
Chlorobenzene	Ü	0.0038	0.010	mq/l		82603	10/10/13	10
Chlorodibromomethane	10	0.0035	0.010	mq/1		82603	10/10/13	10
Chloroethane	Ü		0.010	mg/1		8260B	10/10/13	10
2-Chloroethyl vinyl ether		0.0045	0.050	mq/l		8260B	10/10/13	10
Chloroform	U U	0.030	0.50	mg/1		82603	10/10/13	10
Chloromethane	Ü	0.0032	0.050	mg/1		82603	10/10/13	10
2-Chlorotoluene	L .	0.0028	0.025	mq/1		8260B	10/10/13	10
4-Chlorotoluene	U	0.0038	0.010	mq/l		8260B	10/10/13	10
1,2-Dibromo-3-Chloropropane	U	0.0035	0.010	mg/l		82603	10/10/13	10
1,2-Dibromoethane	U	0.013	0.050	mg/l		8260B	10/10/13	10
Dibromomethane	U U	0.0038	0.010	mg/l		8260B	10/10/13	10
1,2-Dichlorobenzene	Ü	0.0035	0.010	mq/1		8260B	10/10/13	10
1,3-Dichlorobenzene	U	0.0035	0.010	mg/1		82603	10/10/13	10
1,4-Dichlorobenzene	U	0.0022	0.010	mg/1		82603	10/10/13	10
-,4-bichioropenzene	Ü	0.0027	0.010	mg/1		8260B	10/10/13	10
Dichlorodifluoromethane	U	0.0055	0.050	mq/l		8260B	10/10/13	10
1,1-Dichloroethane	U	0.0026	0.010	mg/1		82603	10/10/13	10
1,2-Dichloroethane	U	0.0036	0.010	mg/1		82603	10/10/13	10
1,1-Dichloroethene	U	0.0040	0.010	mg/1		82608	10/10/13	10
cis-1,2-Dichloroethene	0.19	0.0026	0.010	mg/1		8260B	10/10/13	10
trans-1,2-Dichlorcethene	Li Li	0.0040	0.010	mg/l	34	82603	10/10/13	10
,2-Dichloropropane	U U	0.0031	0.010	mg/1		82603	10/10/13	10
1,1-Dichloropropene	U	0.0035	0.010	ma/1		8260B	10/10/13	10
1,3-Dichloropropane	Ŭ U	0.0037	0.010	mg/1		8260B	10/10/13	10
cis-1,3-Dichloropropene	C	0.0042	0.010	mg/1		-8260B	10/10/13	10
trans-1,3-Dichloropropene	U	0.0042	0.010	mq/1		82603	10/10/13	10
2,2-Dichloropropane	Ü	0.0032	0.010	ma/1		82603	10/10/13	10
Di-isopropyl ether	C	0.0032	0.010	mg/1		8260B	10/10/13	10
Ethylbenzene	U.	0.0038	0.010	mg/1		8260B	10/10/13	10
		0.1000		10047		02002	10/10/13	-0

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOO = PQL = EQL = TRRP MQL

Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Site ID :

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2436 Fortune Drive; Ste 180 Lexington, KY 40509

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

: MW-13 Sample ID

Collected By : Jacob A. Morris Collection Date : 10/07/13 16:15

ESC Sample 4 : L661920-03

Project # : 6251-12-1002

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
the black 1 2 but diams		0.0026	0.010	mg/l		8260B	10/10/13	20
Hexachloro-1,3-butadiene	U U	0.0033	0.010	mg/l		82603	10/10/13	10
Isopropylbenzene		0.0035	0.010	mg/l		8260B	10/10/13	10
p-Isopropyltoluene		0.039	0.10	mg/l		8260B	10/10/13	10
2-Butanone (MEK)	Ü	0.010	0.050	mg/1		8260B	10/10/13	10
Methylene Chloride	U.	0.021	0.10	mg/l		82603	10/10/13	10
4-Methyl-2-pentanone (MIBK)	U U	0.0037	0.010			82603	10/10/13	10
Methyl tert-butyl ether				mg/1		8260B	10/10/13	
Naphthalene	U	0.010	0.050	mg/l		8260B	10/10/13	
n-Probylbenzene	U	0.0035	0.010	mg/l				
Styrene	U	0.0031	0.010	mg/1		8260B	10/10/13	
1,1,1,2-Tetrachloroethane	Ũ	0.0038	0.010	mg/l		82603	10/10/13	
1,1,2,2-Tetrachloroethane	L.	0.0058	0.010	mg/l		8260B	10/10/13	
1,1,2-Trichlorotrifluoroethane	U	0.0030	0.010	mg/1		8260B	10/10/13	
Tetrachloroethene	U U	0.0037	0.010	mq/l		8260B	10/10/13	
Toluene	17	0.0078	0.050	mg/l		82603	10/10/13	10
1,2,3-Trichlorobenzene	1.	0.0023	0.010	ma/l		8260B	10/10/13	10
1,2,4-Trichlorobenzene	Ü	0.0021	0.010	mg/1		82603	10/10/13	10
1,1,1-Trichloroethane	11	0.0032	0.010	mg/l		8260B	10/10/13	10
	ŭ	0.0038	0.010	mq/1		8260B	10/10/13	10
1,1,2-Trichloroethane	0.0096	0.0040	0.010	mg/l	J	82603	10/10/13	
Trichloroethene		0.012	0.050	mg/l	× 1	8260B	10/10/13	
Trichlorofluoromethane	U	0.0081	0.025	mg/1		8260B	10/10/13	
1,2,3-Trichloropropane	U					8260B	10/10/13	
1,2,4-Trimethylbenzene	Ü	0.0037	0.010	mg/1		8260B	10/10/13	
1,2,3-Trimethylbenzene	U	0.0032	0.010	mg/l				
1,3,5-Trimethylbenzene		0.0039	0.010	mg/l		82603	10/10/13	
Vinyl chloride	0.018	0.0026	0.010	mg/1		82603	10/10/13	
Xylenes, Total	U	C.011	0.030	mg/l		8260B	10/10/13	10
Surrogate Recovery								
Tcluene-d8	105.			3 Rec.		8260B	10/10/13	
Dibromofluoromethane	97.6			% Rec.		8260B	10/10/13	
4-Bromofluorobenzene	104.			* Rec.		82603	10/10/13	10

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL = TRRP MQL

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.5. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Site ID :

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

Sample ID MW-21

Collected By : Jacob A. Morris Collection Date : 10/07/13 13:00

ESC Sample 4 : L661920-04

Project # : 6251-12-1002

Result MOL Dil. RDL Units Qualifier Method Date TOC (Total Organic Carbon) 74. 1.9 10. mq/19060A 10/14/13 Volatile Organics Acetone 0.081 0.010 0.0089 0.0019 0.050 ma/1 8260B 10/10/13 Acrolein 0.050 0.010 0.001C mq/18260B 10/10/13 Acrylonitrile mq/l 8260B 10/10/13 Benzene 0.00064 mq/1 82603 10/10/13 Bromobenzene 0.0010 ma/1 8260B 10/10/13 Bromodichloromethane 0.00038 0.0010 mq/1 8260B 10/10/13 Bromoform 0.00047 8260B mq/110/10/13 Bromomethane 0.0050 mg/18260B n-Butylbenzene 0.0010 0.00036 mq/1 82603 sec-Butylbenzene 0.00036 ma/1 8260B 10/10/13 tert-Butylbenzene 0.00040 0.0010 ma/1 8260B 10/10/13 Carbon tetrachloride 0.00038 0.0010 mg/1 8260B 10/10/13 Chlorobenzene 0.00035 0.0010 8260B mg/l Chlorodibromomethane 0.00033 0.0010 ma/1 8260B 8260B Chloroethane 0.00045 0.0030 0.00032 0.00071 ma/1 10/10/13 2-Chloroethyl vinyl ether 0.050 8260B mq/110/10/13 Chloroform 0.0050 8260B mg/1Chloromethane 2-Chlorotoluene 0.00028 mg/182603 10/10/13 0.00038 mg/1 82603 10/10/13 4-Chlorotoluene 0.00035 0.0010 9260B mg/1 10/10/13 1,2-Dibromo-3-Chloropropane 0.0013 0.00038 0.0050 8260B mg/1 1,2-Dibromoethane 0.0010 8260B mq/110/10/13 Dibromomethane 82603 mq/11,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 0.0010 ma/1 82603 10/10/13 0.00022 0.0010 mar/182603 0.00027 mg/1 8260B Dichlorodifluoromethane 0.00055 8260B mg/11,1-Dichloroethane 0.00088 0.00026 mq/18260B 1,2-Dichlorcethane 1,1-Dichlorcethene 0.0010 mq/18260B 10/10/13 0.010 0.00040 0.0010 mg/1 82603 10/10/13 cis-1,2-Dichloroethene 0.56 82603 ma/1 10/12/13 trans-1,2-Dichloroethene 1,2-Dichloropropane 0.00040 0.0010 82603 mq/110/10/13 0.0010 mg/18260B 1,1-Cichloropropene ma/1 8260B 10/10/13 1,3-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 2,2-Dichloropropane 0.00037 0.0010 ma/1 8260B 82603 ma/1 82603 ma/1 ma/1 8260B Di-isopropyl ether 8260B Ethylbenzene 0.00038 8260B

= ND (Not Detected)

MDL = Minimum Detection Limit = LOD = TRRP SDL RDL = Reported Detection Limit = LOQ = POL = EQL = TRRP MQL

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Saran Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

ESC Sample 4 : L661920-04

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

Site ID :

October 17, 2013

: MW-21 Sample ID

Froject #: 6251-12-1002

Collected By : Jacob A. Morris Collection Date : 10/07/13 13:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Hexachloro-1,3-butadiene	U	0.00026	0.0010	mg/1		8260B	10/10/13	1
Isopropylbenzene	Ü	0.00033	0.0010	mg/1		8260B	10/10/13	1
p-Isopropyltoluene	ŭ	0.00035	0.0010	mg/1		8260B	10/10/13	1
2-Butanone (MEK)	0.030	0.0039	0.010	mg/l		82603	10/10/13	1
Methylene Chloride	U.	0.0010	0.0050	mg/l		8260B	10/10/13	1
4-Methyl-2-pentanone (MIBK)		0.0021	0.010	mg/1		8260B	10/10/13	1
Methyl tert-butyl ether	U	0.00037	0.0010	mq/1		8260B	10/10/13	1
Nachthalene	ř	0.0010	0.0050	mg/l		8260B	10/10/13	
n-Propylbenzene	1.7	0.00035	0.0010	mg/1		8260B	10/10/13	ą.
	U U	0.00031	0.0010	mg/l		82603	10/10/13	9
Styrene	1.	0.00038	0.3010	mg/1		8260B	10/10/13	
1,1,1,2-Tetrachloroethane	Ü	0.00058	0.0010	mg/l		8260B	10/10/13	
1,1,2,2-Tetrachloroethane		0.00030	0.0010	mg/1		8260B	10/10/13	
1,1,2-Trichlorotrifluoroethane	U U U U	0.00037	0.0010	mg/l		8260B	10/10/13	
Tetrachloroethene	lo lo					82603	10/10/13	
Toluene	0	0.00078	0.0050	mq/1		82603	10/10/13	
1,2,3-Trichlorobenzene	L.	0.00023	0.0010	mg/l				
1,2,4-Trichlorobenzene	L	0.00021	0.0010	mg/l		82603	10/10/13	
1,1,1-Trichloroethane	U	0.00032	0.0010	mg/l		8260B	10/10/13	
1,1,2-Trichloroethane	U	0.00038	0.0010	mg/l		8260B	10/10/13	
Trichloroethene	0.0035	0.00040	0.0010	mg/l		8260B	10/10/13	
Trichlorofluoromethane	U	0.0012	0.0050	mg/1		82605	10/10/13	
1,2,3-Trichloropropane	U	0.00081	0.0025	mg/l		82603	10/10/13	
1,2,4-Trimethylbenzene	U	0.00037	0.0010	mg/l		8260B	10/10/13	
1,2,3-Trimethylbenzene	U	0.00032	0.0010	mg/l		8260B	10/10/13	
1,3,5-Trimethylbenzene	U	0.00039	0.0010	mg/l		8260B	10/10/13	
Vinyl chloride	0.0059	0.00026	0.0010	mg/l		8260B	10/10/13	
Xylenes, Total	Ŭ	0.0011	0.0030	mg/1		8260B	10/10/13	1
Surrogate Recovery								
Toluene-d8	104.			a Rec.		82603	10/10/13	1
Dibromofluoromethane	99.3			7 Rec.		82603	10/10/13	1
4-Bromoflucrobenzene	106.			* Rec.		82603	10/10/13	1

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = POL = EQL = TRRP MQL
Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lepanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Pax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Outober 17, 2013

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

ESC Sample 4 : L661920-05

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

Site ID :

Sample ID MW-22

Project # : 6251-12-1002

Collected By : Collection Date : Jacob A. Morris 10/07/13 12:35

Parameter	Result	MOL	RDL	Units	Qualifier	Method	Date	Dil.
TOC (Total Organic Carbon)	680	1.9	10.	mg/l		9060A	10/14/13	
Volatile Organics								
Acetone	Ü	0.25	24 - 0296	100000000		02/02/02/02/02/02		
Acrolein	ě	0.22	1.3	ma/1		82603	10/10/13	25
Acrylonitrile	ü	0.047		mg/l		8260B	10/10/13	25
Benzene	ŭ		0.25	mq/l		8260B	10/10/13	25
Bromobenzene	ŭ	0.0083	0.025	mg/l		82603	10/10/13	25
Bromodichloromethane		0.0088	0.025	ma/1		8260B	10/10/13	25
Bromoform	U	0.0095	0.025	mg/l		8260B	10/10/13	25
Bromomethane	U	0.012	0.025	mq/l		82603	10/10/13	25
n-Butylbenzene	U	0.022	0.13	mg/1		82603	10/10/13	25
	U	0.0090	0.025	mg/l		8260B	10/10/13	25
sec-Butylbenzene	U	0.0091	0.025	mg/l		8260B	10/10/13	25
tert-Butylbenzene	U	0.010	0.025	mq/1		8260B	10/10/13	25
Carbon tetrachloride	U	0.0095	0.025	ma/1		8260B	10/10/13	25
Chlorobenzene	U	0.0087	0.025	ma/1		82603	10/10/13	25
Chlorodibromomethane	U	0.0082	0.025	mq/1		8260B	10/10/13	25
Chlorcethane	0.024	0.011	0.13	mg/l	3	8260B	10/10/13	25
2-Chloroethyl vinyl ether	U	0.075	1.3	mg/1		82603	10/10/13	25
Chloroform	U	0.0081	0.13	ma/1		8260B	10/10/13	25
Chloromethane	U	0.0069	0.063	mar/1		8260B	10/10/13	25
2-Chlorotoluene	U	0.0094	0.025	mg/l		8260B	10/10/13	25
4-Chlorotoluene	U	0.0088	0.025	mg/1		8260B	10/10/13	25
1,2-Dibromo-3-Chloropropane	1.7	0.033	0.13	ma/1		82603	10/10/13	25
1,2-Dibromoethane	Ũ	0.0095	0.025	mg/1		8260B	10/10/13	25
Dibromomethane	1.	0.0086	0.025	mg/1		8260B		
1,2-Dichlorobenzene	Ŭ	0.0087	0.025	mq/1		8260B	10/10/13	25
1,3-Dichlorobenzene	Ü	0.0055	0.025	mg/1			10/10/13	25
1,4-Dichlorobenzene	ŭ	0.0068	0.025			8260B	10/10/13	25
Dichlorodifluoromethane	Ü	0.0068	0.323	mg/1		82603	10/10/13	25
1,1-Dichloroethane	0.0073	0.0065		mg/1		82603	10/10/13	25
1,2-Dichloroethane	U.0073		0.025	mg/l	0.00	8260B	10/10/13	25
1,1-Dichloroethene	0.080	0.0090	0.025	mq/l		8260B	10/10/13	25
cis-1,2-Dichloroethene	4.6		0.025	mq/1		82603	10/10/13	25
trans-1,2-Dichlorcethene		0.0065	0.025	mg/1		8260B	10/10/13	25
1,2-Dichloropropane	0.012	0.0099	0.025	mg/l	JJ4	82603	10/10/13	25
1,1-Dichloropropene	Ü	0.0076	0.025	mg/1		8260B	10/10/13	25
1,3-Dichloropropane	Ę.	0.0088	0.025	mg/l		8260B	10/10/13	25
cis-1 3-Dioblesses	U	0.0092	0.025	mg/l		82603	10/10/13	25
cis-1,3-Dichloropropene	Û	0.010	0.025	mg/l		82603	10/10/13	25
trans-1,3-Dichloropropene	Ü	0.010	0.025	mg/1		82603	10/10/13	25
2,2-Dichloropropane	G G	0.0080	0.025	mg/1		8260B	10/10/13	25
Di-iscpropyl ether	Ü	0.0080	0.025	mq/1		8260B	10/10/13	25
Ethylpenzene	Ų	0.0096	0.025	mg/1		82603	10/10/13	25

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL - TRRP MQL
Note:

The reported analytical results relate only to the sample supmitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

ESC Sample # : L661920-05

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

Sample ID : MW-22 Site ID :

Collected By : Jacob A. Morris Collection Date : 10/07/13 12:35

Project #: 6251-12-1002

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Hexachloro-1,3-butadiene	U	0.0064	0.025	mq/1		8260B	10/10/13	25
Isopropylbenzene	ŭ	0.0082	0.025	mg/l		8260B	10/10/13	
p-Isopropyltoluene	1.	0.0088	0.025	mg/1		82603	10/10/13	25
2-Butanone (MEK)	0.70	0.098	0.25	ma/l		82603	10/10/13	
Methylene Chloride	U	0.025	0.13	mg/1		8260B	10/10/13	
	1.	0.054	0.25	mg/l		8260B	10/10/13	
4-Methyl-2-pentanone (MIBK)	1.1	0.0092	0.025	mq/1		8260B	10/10/13	
Methyl tert-butyl ether	X	0.025	0.13	mg/1		8260B		
Naphthalene	**		0.025			82603		
n-Propylbenzene	i,	0.0087		mg/1 mg/1		82603	10/10/13	
Styrene	L-		0.025			8260B	10/10/13	
1,1,1,2-Tetrachloroethane	L.	0.0096	0.025	mg/1				
1,1,2,2-Tetrachloroethane	U	0.015	0.025	mq/1		8260B	10/10/13	
1,1,2-Trichlorotrifluorcethane	U	0.0076	0.025	mg/1		8260B	10/10/13	
Tetrachloroethene	U	0.0093	0.025	mg/l		82603	10/10/13	
Toluene	U	0.020	0.13	mg/l		8260B		
1,2,3-Trichlorobenzene	U	0.0058	0.025	mg/l		8260B		
1,2,4-Trichlorobenzene	U	0.0054	0.025	mg/1		8260B	10/10/13	
1,1,1-Trichloroethane	U	0.0080	0.025	mg/1		8260B	10/10/13	
1,1,2-Trichloroethane	U	0.0096	0.025	mq/1		8260B	10/10/13	
Trichloroethene	0.032	0.010	0.025	mq/1		8260B	10/10/13	25
Tricklorofluoromethane	U	0.030	0.13	mg/1		82603	10/10/13	25
1,2,3-Trichloropropane	U	0.020	0.063	mg/1		82603		25
1,2,4-Trimethylbenzene	1.1	0.0093	0.025	$m\alpha/1$		8260B		25
1,2,3-Trimethylbenzene	Ŭ	0.0080	0.025	ng/1		8260B		
1,3,5-Trimethylbenzene	Ť.	0.0097	0.025	mg/l		8260B		
Vinyl chloride	0.11	0.0065	0.025	ng/1		82603		
	Ü	0.026	0.075	mg/1		82603	10/10/13	
Xylenes, Total	U	0.020	0.075	may 1		02000	10/10/11	12.0
urrogate Recovery	104.			3 Rec.		8260B	10/10/13	25
Toluene-d8						8260B	10/10/1	
Dibromofluoromethane	96.0			% Rec.				
4-Bromofluorobenzene	102.			* Rec.		8260B	10/10/13	25

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL = TRRP MQL

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

October 17, 2013

ESC Sample 4 : 1661920-06

Date Received : October 08, 2013
Description : RBTC - Leitchfield, KY

Site ID :

Sample ID : MW-23

Project # : 6251-12-1002

Collected By : Jacob A. Morris Collection Date : 10/07/13 14:10

Parameter	Result	MOL	RDL	Units	Qualifier	Method	Date	Dil.
TOC (Total Organic Carbon)	0.68	0.19	1.0	mg/1	JP1	9060A	10/17/13	<u> </u>
Volatile Organics								
Acetone	Ü	0.050	0.25	mg/1		8260B	10/10/13	5
Acrolein	Ü	0.044	0.25	mg/l		82603	10/10/13	5
Acrylonitrile	Ĝ	0.0094	0.050	mg/1		82603	10/10/13	פוטוטוטוטוטוטוטוטוטוטוטוטוטוטוט
Benzene	õ	0.0016	0.0050	ma/1		8260B	10/10/13	Ę
Bromobenzene	∍û	0.0018	0.0050	mg/1		8260B	10/10/13	<u> </u>
Bromodichloromethane	- di	0.0019	0.0050	mg/1		8260B	10/10/13	Ĕ
Bromeform	Ü	0.0023	0.0050	ma/1		8260B	10/10/13	ž
Bromomethane	ŭ	0.0043	0.025	ma/1		82603	10/10/13	ž.
n-Butylbenzene	Ü	0.0018	0.0050	mg/1		82603	10/10/13	-
sec-Butylbenzene	ŭ	0.0018	0.0050	ma/1		82603	10/10/13	=
tert-Butylbenzene	ŭ	0.0020	0.0050	mg/1		8260B	10/10/13	5
Carbon tetrachloride	Ü	0.0019	0.0050	mg/1		8260B	10/10/13	2
Chlorobenzene	Ľ.	0.0017	0.0050	mg/1		8260B	10/10/13	2
Chlorodibromomethane	Ü	0.0016	0.0050	mar/1		8260B	10/10/13	5
Chloroethane	Ü	0.0023	0.025	mg/1		82603	10/10/13	2
2-Chloroethyl vinyl ether	ŭ	0.015	0.25	mg/1		82603	10/10/13	2
Chloroform	Ü	0.0016	0.025	mg/1		82603	10/10/13	3
Chloromethane	Ü	0.0014	0.013	mg/1		8260B		
2-Chlorotoluene	Ü	0.0019	0.0050			8260B	10/10/13	8
4-Chlorotoluene	Ü	0.0018	0.0050	mg/1			10/10/13	3
1,2-Dibromo-3-Chloropropane	, .	0.0066	0.0050	mg/1		8260B	10/10/13	2
1,2-Dibromoethane	Ü			mg/1		8260B	10/10/13	5
Dipromomethane		0.0019	0.0050	mq/1		82603	10/10/13	2
1,2-Dichlorobenzene	ָ נ נ	0.0017	0.0050	mg/l		82603	10/10/13	5
1,3-Dichlorobenzene	C .	0.0017	0.0050	mg/1		82603	10/10/13	5
1,4-Dichlorobenzene	ŭ	0.0011	0.0050	mg/l		8260B	10/10/13	2
Dichlorodifluoromethane	L U	0.0014	0.0050	mg/1		8260B	10/10/13	2
1,1-Dichloroethane		0.0028	0.025	mq/1		8260B	10/10/13	3
	U	0.0013	0.0050	mg/1		8260B	10/10/13	5
1,2-Dichloroethane	U	0.0018	0.0050	mg/1			10/10/13	5
1,1-Dichloroethene	0.0029	0.0020	0.0050	mq/1	U	8260B	10/10/13	- 5
cis-1,2-Dichloroethene	0.33	0.0013	0.0050	mg/l		8260B	10/10/13	5
trans-1,2-Dichloroethene	0.0051	0.0020	0.0050	mg/1	J 4	82603	10/10/13	5
1,2-Dichloropropane	C	0.0015	0.0050	mg/l		82603	10/10/13	5
1.1-Dichloropropene	U	0.0018	0.0050	mg/l			10/10/13	-5
1,3-Dichloropropane	U	0.0018	0.0050	mg/1		8260B	10/10/13	- 5
cis-1,3-Dichloropropene	U	0.0021	0.0050	mq/l			10/10/13	ज्ञाताचा का जा का जा चा का वात्वाचा का जा जा जा चा
trans-1,3-Dichloropropene	U	0.0021	0.0050	mg/1			10/10/13	5
2,2-Dichloropropane	U	0.0016	0.0050	mq/1		82603	10/10/13	
Di-isopropyl ether	Ü	0.0016	0.0050	mg/1		8260B	10/10/13	5
Ethylbenzene	U	0.0019	0.0050	mq/1		82603	10/10/13	5

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOO = PQL = EQL = TRRP MQL

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. 120e9 Lebanor Ru. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

Outober 17, 2013

ESC Sample 4 : L661920-06

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

Site ID :

: MW-23 Sample ID

Project #: 6251-12-1002

Collected By : Jacob A. Morris Collection Date : 10/07/13 14:10

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Hexachloro-1,3-butadiene	U	0.0013	0.0050	mq/1		8260B	10/10/13	5
Isopropylbenzene	U	0.0016	0.0050	mq/1		8260B	10/10/13	5
p-Isopropyltoluene	Ü	0.0018	0.0050	mg/1		8260B	10/10/13	
2-Butanone (MEK)	U	0.020	0.050	mg/l		82603	10/10/13	5
Methylene Chloride	U	0.0050	0.025	mg/l		82603	10/10/13	5
4-Methyl-2-pentanone (MIBK)	U	0.011	0.050	ma/1		8260B	10/10/13	טי נוו טי
Methyl tert-butyl ether	U	0.0018	0.0050	mg/1		82603	10/10/13	5
Naphthalene	Ü	0.0050	0.025	mg/l		8260B	10/10/13	5
n-Propylbenzene	U	0.0017	0.0050	mq/1		8260B	10/10/13	Š
Styrene	U	0.0015	0.0050	mq/l		8260B	10/10/13	Š
1,1,1,2-Tetrachloroethane	U	0.0019	0.0050	mg/l		8260B	10/10/13	5
1,1,2,2-Tetrachloroethane	(1)	0.0029	0.0050	mg/1		8260B	10/10/13	š.
1,1,2-Trichlorotrifluoroethane	1	0.0015	0.0050	mg/1		8260B	10/10/13	Ę
Tetrachlorcethene	1	0.0019	0.0050	ma/l		82603	10/10/13	5
Toluene	17	0.0039	0.025	mg/l		8260B	10/10/13	ž
1,2,3-Trichlorobenzene	ĭ	0.0012	0.0050	ma/1		8260B	10/10/13	5
1,2,4-Trichlorobenzene	1.	0.0011	0.0050	mg/1		8260B	10/10/13	Ĕ
1,1,1-Trichloroethane	T.	0.0016	0.0050	mg/1		8260B	10/10/13	Ę
1,1,2-Trichloroethane	ř.	0.0019	0.0050	mg/1		8260B	10/10/13	Ĭ
Trichloroethene	0.010	0.0020	0.0050	mq/l		8260B	10/10/13	Ę
Trichlorofluoromethane	U	0.0060	0.025	mg/1		8260B	10/10/13	Ę
1,2,3-Trichloropropane		0.0040	0.013	mg/l		8260B	10/10/13	=
1,2,4-Trimethylbenzene	1.5	0.0019	0.0050	mg/l		8260B	10/10/13	
1,2,3-Trimethylbenzene	Ü	0.0016	0.0050	mg/1		82603	10/10/13	
1,3,5-Trimethylbenzene	ŭ	0.0019	0.0050	mg/1		82603	10/10/13	
Vinyl chloride	0.093	0.0013	0.0050	mg/1		82603	10/10/13	2
Xvlenes, Total	U.USS	0.0053	0.015	mg/1		8260B		2
urrogate Recovery		0.0000	0.013	.ng/1		02005	10/10/13	5 B)
Toluene-d8	104.			A Rec.		8260B	10/10/12	
Dipromoflucromethane	99.8			1 Rec.		8260B	10/10/13	. 2
4-Bromofluorobenzene	102.			Rec.		8260B	10/10/13	

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOO = PQL = EQL = TRRP MQL
Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Tebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859

Pax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

October 17, 2013

ESC Sample # : L661920-07

Date Received : October 08, 2013
Description : RBIC - Leitchfield, KY

Site ID :

Sample ID : MW-17

Project # : 6251-12-1002

Collected By : Jacob A. Morris Collection Date : 10/07/13 17:50

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.	
TOC (Total Organic Carbon)	580	1.9	10.	mg/1		9060A	10/14/13	10	
Volatile Organics								5.00	
Acetone	U	2.0	1.0	2000 1920					
Acrolein	č	1.8	10.	mg/1		82603	10/10/13	200	
Acrylonitrile	ŭ	0.37		md/l		8260B	10/10/13	200	
Benzene	ŭ	0.066	2.0	mq/l		8260B	10/10/13	200	
Bromobenzene	Ü	0.070	0.20	mg/1		8260B	10/10/13	200	
Bromodichloromethane	E	0.076	0.20	mg/1		8260B	10/10/13	200	
Bromoform	E E		0.20	mg/l		8260B	10/10/13	200	
Bromomethane	Ü	0.094	0.20	mq/1		8260B	10/10/13	200	
n-Butylbenzene		0.17	1.0	mg/l		82603	10/10/13	200	
sec-Butylbenzene	U	0.072	0.20	mg/l		8260B	10/10/13	200	
tert-Butylbenzene	U U	0.073	0.20	mg/l		8260B	10/10/13	200	
Carbon tetrachloride		0.080	0.20	mg/l		82603	10/10/13	200	
Chlorobenzene	U	0.076	0.20	ma/1		8260B	10/10/13	200	
Chlorodibromomethane	U	0.070	0.20	mg/l		8260B	10/10/13	200	
Chloroethane	U	0.065	0.20	mq/1		8260B	10/10/13	200	
	U	0.091	1.0	mq/1		82603	10/10/13	200	
2-Chloroethyl vinyl ether Chloroform	U	0.60	10.	mg/1		8260B	10/10/13	200	
	U	0.065	1.0	mq/1		8260B	10/10/13	200	
Chloromethane	U	0.055	0.50	mq/1		82603	10/10/13	200	
2-Chlorotoluene	U	0.075	0.20	mg/1		82603	10/10/13	200	
4-Chlorotoluene	U	0.070	0.20	mg/1		8260B	10/10/13	200	
1,2-Dibromo-3-Chloropropane	U	0.27	1.0	may/1		8260B	10/10/13	200	
1,2-Dibromoethane	€.	0.076	0.20	mq/1		8260B	10/10/13	200	
Dibromomethane	U	0.069	0.20	mg/1		82603	10/10/13	200	
1,2-Dichlorobenzene	U	0.070	0.20	mg/1		8260B	10/10/13	200	
1,3-Dichlorobenzene	U	0.044	0.20	mg/1		8260B	10/10/13	200	
1,4-Dichlorobenzene	t t	0.055	0.20	mg/1		8260B	10/10/13	200	
Dichlorodifluoromethane	U	0.11	1.0	mq/1		8260B	10/10/13	200	
1,1-Dichloroethane	0.15	0.052	0.20	mq/l	j	82603	10/10/13	200	
1,2-Dichloroethane	U	0.072	0.20	ma/1		8260B	10/10/13	200	
1,1-Dichloroethene	0.092	0.080	0.20	mg/1	ğ	82608	10/10/13		
cis-1,2-Dichloroethene	15.	0.052	0.20	mg/1	62	8260B	10/10/13	200	
trans-1,2-Dichlorcethene	Ü	0.079	0.20	mg/1	14	82603		200	
1,2-Dichloropropane	Ü	0.061	0.20	ma/1	U-14		10/10/13	200	
1,1-Dichloropropene	Ü	0.070	0.20			82608	10/10/13	200	
1,3-Dichloropropane	Ü	0.073	0.20	mg/l		8260B	10/10/13	200	
cis-1,3-Dichloropropene	ŭ	0.084	0.20	mg/l		8260B	10/10/13	200	
trans-1,3-Dichloropropene	Ü	0.084		mg/l		82603	10/10/13	200	
2,2-Dichloropropane	i.	0.084	0.20	mg/1		82603	10/10/13	200	
Di-isopropyl ether	ŭ		0.20	mg/1		82605	10/10/13	200	
Ethylbenzene	Ü	0.064	0.20	mg/l		8260B	10/10/13	200	
,	C)	0.077	0.20	mq/1		82603	10/10/13	200	

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD - TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL = TRRP MQL

Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.5. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2436 Fortune Drive; Ste 100 Lexington, KY 40509

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

: MW-17 Sample ID

Collected By : Jacob A. Morris Collection Date : 10/07/13 17:50

ESC Sample 4 : L661920-07

Site ID :

Project # : 6251-12-1002

rameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Hexachioro-1,3-butadiene	12	C.051	0.20	mg/1		82603	10/10/13	200
Isopropylbenzene	Ğ .	0.065	0.20	mg/1		8260B	10/10/13	200
p-Isopropyltoluene	ř.	0.070	0.20	mg/l		8260B	10/10/13	200
2-Butanone (MEK)	ř	0.79	2.0	mg/l		8260B	10/10/13	
Methylene Chloride	Ü	0.20	1.0	mg/1		8260B	10/10/13	200
Methylene Chibitde		0.43	2.0	mq/1		8260B	10/10/13	200
4-Methyl-2-pentanone (MIBK)	Ü	0.073	0.20	mg/1			10/10/13	200
Methyl tert-butyl ether	ü	0.20	1.0	mg/l		8260B	10/10/13	200
Naphthalene	Ü	0.070	0.20	mg/l		8260B	10/10/13	200
n-Probylbenzene	U	0.061	0.20	mg/1		8260B	10/10/13	
Styrene	Ü	0.077	0.20	mg/1		8260B	10/10/13	
1,1,1,2-Tetrachloroethane				mg/1		8260B	10/10/13	
1,1,2,2-Tetrachloroethane	L.	0.12	0.20			82603	10/10/13	
1,1,2-Trichlorotrifluoroethane	U	0.061	0.20	mg/l		8260B	10/10/13	
Tetrachloroethene	U U	0.074	0.20	mg/1				
Toluene	U	0.16	1.0	mq/l		8260B	10/10/13	
1,2,3-Trichlorobenzene	U	0.046	0.20	mq/l		8260B	10/10/13	
1,2,4-Trichlorobenzene	U	0.043	0.20	mg/l		82608	10/10/13	
1,1,1-Trichloroethane	U	0.064	0.20	mg/l		8260B	10/10/13	
1,1,2-Trichloroethane	U	0.077	0.20	mg/1		8260B	10/10/13	
Trichlorpethene	0.099	0.080	0.20	mg/1	Ø1	8260B	10/10/13	
Trichlorofluoromethane	U	0.24	1.0	mg/1		82603		
1,2,3-Trichloropropane	U	0.16	0.50	ng/1			10/10/13	
1,2,4-Trimethylbenzene	U	0.075	0.20	mg/1			10/10/13	
1,2,3-Trimethylbenzene	U	0.064	0.20	mg/1		8260B	10/10/13	
1,3,5-Trimethylbenzene	U	0.077	0.20	mg/1		82603	10/10/13	
Vinyl chloride	3.1	0.052	0.20	mg/l		82603	10/10/13	
Xylenes, Total	U	0.21	0.60	mg/l		8260B	10/10/13	200
rrogate Recovery	10.00			F 1233 0 P 23420 1/4				
Toluene-d8	105.			* Rec.		8260B	10/10/13	200
Dibromoflucromethane	98.4			% Rec.		82603	10/10/13	200
4-Bromofluorobenzene	100.			i Rec.		82603	10/10/13	200

U = NP (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL = TRRP MQL
Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

Date Received : October 08, 2013 Description : RBTC - Leitchfield, KY

Sample ID

: SW-4

Collected By : Jacob A. Morris Collection Date : 10/07/13 11:00

ESC Sample 4 : L661920-08

Site ID :

Project # : 6251-12-1002

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
TOC (Total Organic Carbon)	0.22	0.19	1.0	mq/l	3	9060A	10/17/13	
Volatile Organics								
Acetone	U	0.020	0.10	ma/1		00000	12000000000	199
Acrolein	Ü	0.018	0.10			8260B	10/10/13	2 2
Acrylonitrile	Ü	0.0037	0.020	mg/l		8260B	10/10/13	
Benzene	Ŭ	0.00066	0.0020	mq/l		8260B	10/10/13	2
Bromobenzene	Ü			mg/l		8260B	10/10/13	2
Bromodichloromethane	Ü	0.00070	0.0020	mg/l		8260B	10/10/13	2 2 2
Bromoform	U	0.00076	0.0020	mg/l		8260B	10/10/13	
Bromomethane	Ü	0.00094	0.0020	mq/1		82603	10/10/13	2
n-Butylbenzene		0.0017	0.010	mg/l		8260B	10/10/13	2
sec-Butylbenzene	U	0.00072	0.0020	mg/l		8260B	10/10/13	2
tert-Butylbenzene		0.00073	0.0020	mg/l		82603	10/10/13	2
Carbon tetrachloride	Ü	0.00080	0.0020	mg/l		82603	10/10/13	2
Chlorobenzene	C,	0.00076	0.0020	mg/l		8260B	10/10/13	2
Chlorodibromomethane	t	0.00070	0.0020	mq/1		8260B	10/10/13	2
Chloroethane	U	0.00065	0.0020	mq/1		82603	10/10/13	2
2-Chloroethyl vinyl ether	0.0062	0.00091	0.010	mg/1	J	82603	10/10/13	2
Chloroform	U	0.0060	0.10	mg/l		8260B	10/10/13	2
Chloromethane	U	0.00065	0.010	mq/l		8260B	10/10/13	2 2 2 2 2 2 2 2 2 2 2 2
2-Chlorotoluene	U	0.00055	0.0050	mg/1		8260B	10/10/13	2
4-Chlorotoluene	U	0.00075	0.0020	mg/l		8260B	10/10/13	2 2 2 2 2 2 2 2
- Chibiotottene	Ü	0.00070	0.0020	mg/l		8260B	10/10/13	2
1,2-Dibromo-3-Chloropropane	U	0.0027	0.010	mq/l		82603	10/10/13	2
1,2-Dibromoethane	U	0.00076	0.0020	mg/1		82603	10/10/13	5
Dibromomethane	U	0.00069	0.0020	mq/1		82603	10/10/13	2
1,2-Dichlorobenzene	Ü	0.00070	0.0020	mg/1		8260B	10/10/13	2
1,3-Dichlorobenzene	U	0.00044	0.0020	mg/1			10/10/13	5
1,4-Dichlorobenzene	Ü	0.00055	0.0020	mq/1		82603	10/10/13	2
Dichlorodifluoromethane	Ü	0.0011	0.010	mq/1		82603	10/10/13	2
-,1-Dichlorcethane	0.0032	0.00052	0.0020	mg/1			10/10/13	2
1,2-Dichlorcethane	U	0.00072	0.0020	ma/1		8260B	10/10/13	5
1,1-Dichloroethene	0.013	0.00080	0.0020	mg/l		82603	10/10/13	2 2 25
cis-1,2-Dichloroethene	2.7	0.0065	0.025	mq/1			10/12/13	2.5
trans-1,2-Dichloroethene	0.0054	0.00079	0.0020	ma/1	J4	82603	10/10/13	2
1,2-Dichloropropane	U	0.00061	0.0020	mg/1	2.3		10/10/13	2
1,1-Dichloropropene	Ţ.	0.00070	0.0020	mg/1		8260B	10/10/13	~
1,3-Dichloropropane	Ü	0.00073	0.0020	mg/1		82603	10/10/13	2 2 2
cis-1,3-Dichloropropene	U U	0.00084	0.0020	mg/1			10/10/13	2
trans-1,3-Dichloropropene	Ŭ	0.00084	0.0020	ma/1			10/10/13	~
2,2-Dichloropropane	ŭ	0.00064	0.0020	mg/1				2
Di-isopropyl ether	ũ	0.00064	0.0020	mg/1			10/10/13	2 2 2 2 2
Ethylpenzere	ŭ	0.00077	0.0020	2016 A 2		0/005	10/10/13	2

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL = TRRP MQL
Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebenon Rd. Mi. Juliet, IN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Site ID :

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

Sample ID

Collected By : Jacob A. Morris Collection Date : 10/07/13 11:00

ESC Sample # : L661920-08

Project # : 6251-12-1002

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Hexachloro-1,3-butadiene	11	0.00051	0.0020	mq/l		8260B	10/10/13	2
sopropylbenzene	U	0.00065	0.0020	mg/1		82608	10/10/13	2
p-Isopropyltoluene	ĭ	0.00070	0.0020	mg/1		82603	10/10/13	
2-Butanone (MEK)	ř	0.0079	0.020	mg/l		8260B	10/10/13	
Methylene Chloride	U	0.0020	0.010	mg/1		8260B	10/10/13	2
	ř	0.0043	0.020	mg/l		82603	10/10/13	2 2 2 2
4-Methyl-2-pentanone (MIBK)	ĕ	0.00073	0.0020	mg/l		82603	10/10/13	2
Methyl tert-butyl ether	7	0.0020	0.010	mg/l		8260B	10/10/13	2
Naphthalene	U U U	0.00070	0.0020	mg/l		8260B	10/10/13	
n-Propylbenzene		0.00061	0.0020	mg/l		8260B	10/10/13	
Styrene	Ü	0.00077	0.0020	mg/1		8260B	10/10/13	
1,1,1,2-Tetrachloroethane	i.		0.0020	mg/1		82603	10/10/13	
1,1,2,2-Tetrachloroethane	L.	0.0012				8260B	10/10/13	
1,1,2-Trichlorotrifluoroethane	U U	0,00061	0.0020	mg/l		8260B	10/10/13	5
Tetrachloroethene	G.	0.00074	0.0020	mq/1				
Toluene	U	0.0016	0.010	mg/l		82603	10/10/13	2
1,2,3-Trichlorobenzene	U	0.00046	0.0020	mg/l		8260B	10/10/13	2
1,2,4-Trichlorobenzene	U	0.00043	0.0020	mg/1		8260B	10/10/13	2
1,1,1-Trichloroethane	U	0.00064	0.0020	mg/1		8260B	10/10/13	2
1,1,2-Trichloroethane	U	0.00077	0.0020	mq/1		8260B	10/10/13	2
Trichloroethene	0.26	0.00080	0.0020	mq/l		82603	10/10/13	2
Trichlorofluoromethane	U	C.0024	0.010	mg/1		8260B	10/10/13	2
1,2,3-Trichloropropane	U	0.0016	0.0050	mg/l		8260B	10/10/13	2
1,2,4-Trimethylpenzene	U	0.00075	0.0020	mq/1		8260B	10/10/13	2
1,2,3-Trimethylbenzene	Ů	0.00064	0.0020	mg/1		8260B	10/10/13	2
1,3,5-Trimethylbenzene	17	0.00077	0.0020	ma/1		82603	10/10/13	
Vinvl chloride	0.66	0.0065	0.025	mg/l		8260B	10/12/13	3 25
Xvlenes, Total	Ü	0.0021	0.0060	mq/1		8260B	10/10/13	3 2
	Ů,	0.002						
Surrogate Recovery	96.4			% Rec.		8260B	10/10/13	3 2
Toluene-d8	101.			% Rec.		82603	10/10/13	
Dibromoflucromethane	97.7			* Rec.		8260B	10/10/13	
4-Bromoflucrobenzene	21.1			n Avec.		05000		537 (27

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL = TRRP MQL
Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. 7269 Lebanor Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

Date Received : October 08, 2013
Description : RBIC - Leitchfield, KY

Sample ID TRIPBLANK

Collected By : Collection Date : : Jacob A. Morris e: 10/07/13 00:00 ESC Sample # : L661920-09

Site ID :

Project # : 6251-12-1002

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Volatile Organics			Marine Constitution of the					
Acetone	U	0.010	0 050	5000001904				
Acrolein	Ü	0.010	0.050	mg/l		8260B	10/10/13	1
Acrylonitrile	ŭ	0.0089	0.050	mg/l		8260B	10/10/13	1
Benzene		0.0019	0.010	mg/1		82603	10/10/13	1
Bromobenzene	Ü	0.00033	0.0010	mg/l		8260B	10/10/13	1
Bromodichloromethane	Ü	0.00035	0.0010	mq/1		8260B	10/10/13	1
Bromoform	U	0.00038	0.0010	mg/1		8260B	10/10/13	1
Bromomethane	Ü	0.00047	0.0016	mq/1		82603	10/10/13	1
n-Butylbenzene	U	0.00087	0.0050	mg/1		8260B	10/10/13	1
	U	0.00036	0.0010	mg/l		8260B	10/10/13	187
sec-Butylbenzene	U	0.00036	0.0010	mg/l		8260B	10/10/13	4
tert-Butylbenzene	U	0.00040	0.0010	ma/1		82603	10/10/13	7
Carbon tetrachloride	U	0.00038	0.0010	mg/1		8260B	10/10/13	4
Chlorobenzene	U	0.00035	0.0010	mg/1		8260B	10/10/13	7
Chlorodibromomethane	U	0.00033	0.0010	mg/1			10/10/13	-
Chloroethane	Ü	0.00045	0.0050	mg/l				-
2-Chloroethyl vinyl ether	U	0.0030	0.050	ma/1			10/10/13	1
Chloroform	U	0.00032	0.0050	mg/1			10/10/13	1
Chloromethane	Ü	0.00028	0.0025			8260B	10/10/13	1
2-Chlorotoluene	Ü	0.00038		mg/1			10/10/13	1
4-Chlorotoluene	ŭ	0.00035	0.0010	mq/1			10/10/13	1
1,2-Dibromo-3-Chloropropane	U		0.0010	mg/l		8260B	10/10/13	1
1,2-Dibromoethane	Ü	0.0013	0.0050	mq/l			10/10/13	1
Dibromomethane	Ü	0.00038	0.0010	mg/1			10/10/13	1
1,2-Dichlorobenzene	L	0.00035	0.0010	mg/1			10/10/13	1
1,3-Dichlorobenzene	U	0.00035	0.0010	mg/l		8260B	10/10/13	1
1,4-Dichlorobenzene	Ū	0.00022	0.0010	mq/1		8260B	10/10/13	1
Dishlamadisi	U	0.00027	0.0010	mq/1			10/10/13	1
Dichlorodifluoromethane	U	0.00055	0.0050	mg/1			10/10/13	1
1,1-Dichloroethane	Ü	0.00026	0.0010	ma/1			10/10/13	1
1,2-Dichloroethane	U	0.00036	0.0010	mg/1			10/10/13	7
1,1-Dichloroethene	Ü	0.00040	0.0010	mg/1			10/10/13	Ť
cis-1,2-Dichloroethene	U	0.00026	0.0010	mg/1			10/10/13	
trans-1,2-Dichlorcethene	U	0.00040	0.0010	mq/1	J4		10/10/13	-
1,2-Dichloropropane	U	0.00031	0.0010	mg/1	0.1		10/10/13	1
1,1-Dichloropropene	ũ	0.00035	0.0010	mg/1			10/10/13	1
1,3-Dichloropropane	Ü	0.00037	0.0010	mg/1				4
cis-1,3-Dichloropropere	ě	0.00042	0.0010	mg/1			10/10/13	1
trans-1,3-Dichloropropene	ŭ	0.00042	0.0010	mg/1			10/10/13	-
2,2-Dichloropropage	ŭ	0.00032	0.0010				10/10/13	3.
Di-isopropyl ether	õ	0.00032		mg/1			10/10/13	
Ethylpenzene	Ü		0.0010	mq/l			10/10/13	1
Hexachloro-1,3-butadiene		0.00038	0.0010	mq/1			10/10/13	1
Isopropylbenzene	U	0.00026	0.0010	mg/1			10/10/13	1
brobing trainsaile	- L	0.00033	0.0010	mg/l		82603	10/10/13	1

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOO = PQL = EQL = TRRP MQL
Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lepanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17, 2013

Site ID :

Ms. Sarah Donaldson AMEC Env. & Infrastructure - Lexing 2456 Fortune Drive; Ste 100 Lexington, KY 40509

Date Received : October 08, 2013 Description : RBIC - Leitchfield, KY

: TRIPBLANK Sample ID

Collected By : Jacob A. Morris Collection Date : 10/07/13 00:00

ESC Sample # : L661920-09

Project # : 6251-12-1002

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
p-Isopropyltoluene	Ü	0.00035	0.0010	mg/l		8260B	10/10/13	1
2-Butanone (MEK)	Ü	0.0039	0.010	mq/l		82603	10/10/13	1
Methylene Chloride	Ü	0.0010	0.0050	mg/1		8260B	10/10/13	1
4-Methyl-2-pentanone (MIBK)	t :	0.0021	0.010	mq/1		8260B	10/10/13	1
Methyl tert-butyl ether	Ü	0.00037	0.0010	mq/1		8260B	10/10/13	1
Naphthalene	1.	0.0010	0.0050	mg/l		8260B	10/10/13	1
n-Propylbenzene	1.	0.00035	0.0010	mg/l		82603	10/10/13	1
	ĭ	0.00031	0.0010	mg/1		8260B	10/10/13	1
Styrene 1,1,1,2-Tetrachloroethane	17	0.00038	0.0010	mg/1		8260B	10/10/13	
1,1,2,2-Tetrachloroethane	Ü	0.00058	0.0010	mg/l		8260B	10/10/13	
1,1,2-Trichlorotrifluoroethane	17	0.00030	0.0010	mg/l		82603	10/10/13	
	1	0.00037	0.0010	mg/1		82603	10/10/13	
Tetrachlorcethene	17	0.00078	0.0050	mg/1		8260B	10/10/13	
Toluene	11	0.00023	0.0010	mq/1		8260B	10/10/13	
1,2,3-Trichlorobenzene	Ü	0.00023	0.0010	mq/1		8260B	10/10/13	
1,2,4-Trichlorobenzene			0.0010	ma/1		8260B	10/10/13	
.1.1-Trichlorcethane	L.	0.00032				82603	10/10/13	
1,1,2-Trichloroethane	U	0.00038	0.0010	mg/1		8260B	10/10/13	
Trichloroethene	U	0.00040	0.0010	ma/1		8260B	10/10/13	
Trichlorofluoromethane	C	0.0012	0.0050	mg/1				
1,2,3-Trichloropropane	Ü	0.00081	0.0025	mq/1		8260B	10/10/13	
1,2,4-Trimethylbenzene	U U U	0.00037	0.0010	mg/1		8260B	10/10/13	
1,2,3-Trimethylbenzene		0.00032	0.0010	mg/l		82603		
1,3,5-Trimethylbenzene	U	0.00039	0.0010	mg/1		8260B		
Vinyl chloride	U	0.00026	0.0010	mg/l		8260B	10/10/13	
Xylenes, Total	U	0.0011	0.0030	mg/1		8260B	10/10/13	1
Surrogate Recovery								
Toluene-d8	105.			* Rec.		8260B		
Dibromofluoromethane	98.8			i Rec.		82603		
4-Bromofluorobenzene	100.			% Rec.		82603	10/10/13	1

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD = TRRP SDL
RDL = Reported Detection Limit = LOQ = PQL = EQL = TRRP MQL

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run 1D	Qualifier
L661920-01	WG686066 WG686066	SAMP SAMP	1,1-Dichloroethane 1,1-Dichloroethene	R2839127	d
L661920-02	WG686066 WG686066 WG686066	SAMP SAMP	trans-1,2-Dichloroethene Acetone trans-1,2-Dichloroethene	R2839127 R2839127 R2839127	J J4 J
L661920-03	WG686066 WG686066 WG686066	SAMP SAMP SAMP	Trichlorcethene Acetone	R2839127 R2839127 R2839127	J4 J
L661920-04	WG686066 WG686066 WG686066	SAMP SAMP SAMP	trans-1,2-Dichlorcethene Trichlorcethene Benzene	R2839127 R2839127 R2839127	J4 J
L661920-05	WG686066 WG686066 WG686066 WG686066	SAMP SAMP SAMP SAMP	Chloroethane 1.1-Dichloroethane trans-1.2-Dichloroethene Chloroethane 1.1-Dichloroethane	R2839127 R2839127 R2839127 R2839127	J J J4 J
L661920-06	WG686066 WG687052 WG686066	SAMP SAMP SAMP	trans-1,2-Dichlorcethene TOC (Total Organic Carbon)	R2839127 R2839127 R2641214	J JJ4 JP1
L661920-07	WG686066 WG686066 WG686066	SAMP SAMP SAMP	1,1-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethane 1,1-Dichloroethene	R2839127 R2839127 R2839127	3 J4 J
L661920-08	WG686066 WG687052	SAMP SAMP SAMP	trans-1,2-Dichloroethene Irichloroethene TOC (Ictal Organic Carpor)	R2839127 R2839127 R2839127 R2841214	3 34 3
661920-09	WG686066 WG686066 WG686066	SAMP SAMP SAMP	Chloroethane trans-1,2-Dichloroethene trans-1,2-Dichloroethene	R2839127 R2839127 R2839127	J J4 J4

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
J4	The associated batch QC was outside the established quality control range for accuracy.
21	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

Oualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions Accuracy - The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.

- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- not target compounds, internal standards, system monitoring compounds, or surrogates. TIC - Tentatively Identified Compound: Compounds detected in samples that are

Summary of Remarks For Samples Printed 10/17/13 at 16:30:35

TSR Signing Reports: 044 R5 - Desired TAT

GW As by 6020 1CP/MS Alison's direct dial 859-566-3729 All soils need dry weight reporting.

Sample: L661920-01 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

Sample: L661920-02 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

Sample: L661920-03 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Sample: L661920-04 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

Sample: L661920-05 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

Sample: L661920-06 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

Sample: L661920-07 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

Sample: L661920-08 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

Sample: L661920-09 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

Sample: L661920-09 Account: MACTECLEX Received: 10/08/13 09:00 Due Date: 10/15/13 00:00 RPT Date: 10/17/13 16:29 Special Handling - Samples will need to be filtered with a syringe filter before analysis.

AMEC Env. & Infrastructure - Lexington Ms. Sarah Donaldson 2456 Fortune Drive: Ste 100

Lexington, KY 40509

12065 Lebanor Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

1661920

October 17, 2013

nalyte ,1,1,2-Tetrachloroethane	Result	Units & Rec	Limit	
	< .001	mg/l		WG686066 10/10/13 13:38
.1.l-Trichloroethare	< .001	mg/l		WG686066 10/10/13 13:38
,1,2,2-Tetrachiproethane	< .001	mg/1		WG686066 10/10/13 13:38
.1.2-Trichloroethane	< .001	mg/l		WG686066 10/10/13 13:38
,1,2-Trichlorotrifluorpethane	< .001	mg/1		WG686066 10/10/13 13:38
,1-Dichloroethane	< .001	mg/l		WG686066 10/10/13 13:38
,1-Dichloroethene	< .001	mg/l		WG686066 10/10/13 13:38
,1-Dichloropropene	< .001	mg/1		WG686066 10/10/13 13:38
,2,3-Trichloropenzene	< .000	mg/1		WG686066 10/10/13 13:38
,2,3-Trichloropropane	< .001	mg/l		WG686066 10/10/13 13:38
,2,3-Trimethylbenzene	< .001	mg/1		WG686066 10/10/13 13:38
,2,4-Trichloropenzene	< .001	mg/l		WG686066 10/10/13 13:39
,2,4-Trimethylbenzene	< .001	mg/1		WG686066 10/10/13 13:38
,2-Dibromo-3-Chioropropans	< .005	mg/l		WG686066 10/10/13 13:38
.2-Dibromoethane	< .001	mg/l		WG686066 10/10/13 13:38
,2-Dichlorobenzene	< .001	mg/l		WG686066 10/10/13 13:38
,2-Dichloroethane	< .001	mg/1		WG686066 10/10/13 13:38
,2-Dichloropropane	< .00%	mg/_		WG686066 10/10/13 13:38
1,3,5-Trimethylbenzene	< .001	mg/l		WG686066 10/10/13 13:38
,3-Dichlorobenzene	< .001	mg/1		WG686066 10/10/13 13:3
.3-Dichloropropane	< .001	mg/1		WG686066 10/10/13 13:38
1,4-Dichlorobenzene	< .001	mg/i		WG686066 10/10/13 13:3:
2,2-Dichloropropane	< .001	mg / 1		WG686066 10/10/13 13:3
2-Butanone (MEK)	< .01	mg/1		WG686066 10/10/13 13:3
2-Chloroethyl vinyl ether	< .05	mg/1		WG686066 10/10/13 13:3
2-Chiorocoluene	< .001	mg/_		WG686066 10/10/13 13:3
4-Chiaratoluene	< .001	mg/l		WG686066 10/10/13 13:3
4-Methyl-2-pentanone (MIBK)	< .01	mg/l		WG686066 10/10/13 13:3
Acetone	< .05	mg/l		WG686066 10/10/13 13:3
Acrolein	< .025	mg/l		WG686066 10/10/13 13:3
Acrylonitrile	< .01	mg/1		WG686066 10/10/13 13:3
Merylonitile Benzene	< .001	ma/l		WG686066 10/10/13 13:3
Bromobenzene	< .001	mg/1		WG686066 10/10/13 13:3
Bromodichloromethane	< .001	mg/i		WG686066 10/10/13 13:3
	< .001	mg/_		WG686066 10/10/13 13:3
Bromeform	< .005	mg/I		WG686066 10/10/13 13:3
Bromomethane	< .001	mg/l		WG686066 10/10/13 13:3
Carbon tetrachloride	< .001	mg/=		WG686066 10/10/13 13:3
Chlorobenzene	< .001	mg/1		WG686066 10/10/13 13:3
Chlorodibromomethane	< .005	mg/l		WG686066 10/10/13 13:3
Chloroethane	< .005	mg/1		WG686066 10/10/13 13:3
Chlereform	< .0025	mg/1		WG686066 10/10/13 13:3
Chloromethane	< .001	mg/1		WG686066 10/10/13 13:3
cis-1,2-Dichlorcethene	< .001	mg/l		WG686066 10/10/13 13:3
cis-1,3-Dichloropropene	< .001	mg/I		WG686066 10/10/13 13:3
Di-isopropyl ether	< .001	mg/1		WG686066 10/10/13 13:1
Dibromomethane	< .005	ma/_		WG686066 10/10/13 13:3
Dichlorodifluoromethane	< .001	mg / -		WG686066 10/10/13 13:3
Ethylberzene	< .001	mg/1		WG686066 10/10/13 13:3
Hexachloro-1,3-butadiene	< .001	mg/l		WG686066 10/10/13 13:1
Isopropylberzene	< .001	mer/1		WG686066 10/10/13 13:
Methyl tert-butyl other	< .005	mg/1		WG686066 10/10/13 13:
Methylene Chloride	< .001	mg/2		WG686066 10/10/13 13:
n-Butylbenzene	< .001			WG686066 10/10/13 13:
n-Propy_benzene		mg/=		WG686066 10/10/13 13:
Naphthalene	< .005	mg/l		WG686066 10/10/13 13:
p-Isopropyltoluere	.001	mg/1		WG686066 10/10/13 13:
sec=Butylbenzene	< .001	mg/L		WG686066 10/10/13 13:
Styrene tert-Butylbenzene	< .001	mg/l mg/l		WG686066 10/10/13 13:

tert-Butylbenzene < .001 mg/l
Performance of this Analyte is outside of established criteria.
For additional information, please see Attachment A 'Dist of Analytes with QC Qualifiers.'

AMEC Env. & Infrastructure - lexington Ms. Sarah Donaldson 2456 Fortune Drive; Ste 100

Lexington, KY 40509

12065 Lepanor Rd. Mr. Juliet, TN 37122 (615) 758-5858 1-800-76/-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

1661920

October 17, 2013

		Labo	ratory Blan	13			
Analyte	Result	Uni	ts	Rec	Limit	Batch D	ate Analyze:
Tetrachlorgethere	2 001						
Toluene	< .001	mg/					0/10/13 13:3
	< .005	mg /					0/10/13 13:3
trans-1,2-Dichloroethene	< .001	mg/				WG686066 1	0/10/13 13:1
trans-1,3-Dichloropropene	< .001	mg/	1			WG686066 1	0/10/13 13:3
Trichloroethene	< .001	mg/	2			WC686066 1	0/10/13 13:0
Trichlorofluoromethane	< .005	mg/	1			WG686066 1	0/10/13 13:3
Vinyl chloride	< .001	mg/	1			W3686066 1	0/10/13 13:1
Xylenes, Total	< .003	ma/	1				0/10/13 13:0
4-Bromofluorobenzene				.02.0	71-126		1/10/13 13:3
Dibromofluoromethane		8 B	ec.	97.60	78.3-121		0/10/13 13:1
Toluene-d8		4 B	ec.	02.0	88.5-111		//10/13 13:3
cis-1,2-Dichlorcethene	< .001	mg/	1			WS686717 1	0/12/13 02:0
Vinyl chloride	< .001	ma/					0/12/13 02:0
4-Bromofluorobenzene	4000 RETERMENT			07.0	71-126		0/12/13 02:0
Dibromofluoromethane				06.0	78.3-121		0/12/13 02:0
Toluene-d8		5 R		03.0	88.5-111		
		3 0	ec.	02.0	80.3	WG080/1/ 10)/12/13 02:0
TOC (Total Organic Carbon)	< 1	mg/	1		*	WG686720 16	/14/13 12:5
TOC (Total Organic Carbon)	< 1	mg/	1			WG687052 10	/17/13_10:1
			Duplicate				
Analyte	Units	Result	Duplicat	e RPD	Limit	Ref Samp	Batch
TOC (Total Organic Carbon)	mg/l	6.51	7.00	7.25	20	L661914-63	WG68672
TCC (Total Organic Carbon)	mg/l	0.00	0.00	0.00	20	1.662305-0	
TOC (Total Organic Carbon)	mg/1	0.431	0.680	44.8*	20	1661920-06	WG68705
TOS (Total Organic Carbon)	mg/1	0.218	0.220	12.0	20	1661920-08	
		Laborato	ry Control	Sample			
Analyte	Units	Enown V	a L	Result	* Rec	Limit	Batch
1,1,1,2-Tetrachloroethane	mg/l	.025	0	.0213	85.3	74.2-124	WG68606
1,1,1-Trichloroethane	mg/l	.025	0	.0195	78.1	73.2-123	WS68606
1,1,2,2-Tetrachlordethane	mg/1	.025	0	.0214	85.5	70.7-122	WG68606
1,1,2-Trichloroethane	mg/1	.025		.0202	80.7	77.7-118	WG68606
1,1,2-Trichlorotrifluoroethane	mg/l	.025	0	.0253	101.	67.2-143	WG68606
1,1-Dichloroethane	mg/l	.025		.0192	76.9	70.7-126	WG68606
1,1-Dichloroethene	mg/l	.025		.0219	87.6	67.8-129	WG68606
1,1-Dichloropropene	mg/.	.025		.0201	80.4	73.1-125	WG68606
.,2,3-Trichlorobenzene	mg/I	.025		.0219	87.8	64.9-135	
1,2,3-Trichloropropane	mg/l	.025		.0222	88.9		WG68606
,2,3-Trimethylbenzene						71.8-121	WG68606
.2,4-Trichlorobenzene	mg/l	.025		.0191	76.2	72.3-116	WG68606
1,2,4-Trimethylbenzene	mg/1	.025		.0231	92.3	69.7-136	WG68606
.2-Dibromo-3-Chloropropane	mg/l	.025		.0220	88.0	75-123	WG68606
,2-Dibromoethane	mg/l	.025		.0183	73.3	65.4-128	WG68606
1,2-Dichlorobenzene	mg/i	.025		.0221	88.2	76.6-121	WG68606
	mg/l	.025		.0219	87.8	78.4-117	WG68606
,2-Dichloroethane	mg/l	.025		.0208	83.4	68.8-124	WG68606
,2-Dichloropropane	mg/l	.025	0.	.0203	81.2	76.5-119	WG68606
,3,5-Trimethylbenzene	mg/l	.025	0	.0225	90,1	75.6-124	WG68606
,3-Dichlorobenzene	mg/l	.025	0	.0237	94.7	70.8-128	WG68606
.,3-Dichloropropane	mg/l	.025	0	.0214	85.6	77.4-117	WG68606

* Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

AMEC Env. & infrastructure - Lexington Ms. Saran Dobaldson 2456 Fortune Drive; Ste 100

Lexington, KY 40509

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

1661920

October 17, 2013

		Laboratory Cor	ntrol Sample			
Analyte	Units	Known Val	Result	% Rec	Limit	Batch
A Diek Levebengene	mg/_	.025	0.0218	87.4	78.8-115	WG6860
1,4-Dichlorobenzene		.025	0.0186	74.4	62.4-133	WG6860
,2-Dichloropropane	mg/1	.125		75.7	55-149	WG6860
2-Butanone (MEK)	mg/l		0.0946			
2-Chloroethyl vinyl ether	mg/l	.125	0.0773	61.8	43.8-150	WG6860
2-Chloratoluene	mg/1	.025	0.0229	91.6	74.7-122	WG6860
1-Chlorotoluene	mg/l	.025	0.0227	90.7	77.5-120	WG6860
4-Methyl-2-pentanone (MIBK)	mg/l	.125	0.103	82.4	70.5-133	WG6860
Acetone	mg/l	.125	0.0837	67.0	35.6-163	WG6860
Acrolein	mg/1	.125	0.135	108.	10-190	WG6860
Acrylonitrile	mg/1	.125	0.103	82.7	55.2-130	WG6860
Benzene	mg/1	.025	0.0198	79.3	74.8-121	WG6860
Bromobenzene	mg/l	.025	0.0215	86.1	77.5-116	WG6860
Bromodichloromethane	mg/1	.025	0.0198	79.1	75.1-116	WG6860
Bromoform	mg/1	.025	0.0211	84.6	67.5-130	WG6860
		.025	0.0320	128.	43.3-162	W36860
Bromomethane	mg/l				70.2-123	WG686D
Carbon tetrachioride	mg/l	.025	0.0205	82.0		
Chlorobenzene	mg/1	.025	0.0222	89.0	78.1-113	WG6860
Chlorodibromomethane	mg/.	.025	0.0207	82.7	74-121	WG6860
Chloroetnane	mg/l	.025	0.0222	88.8	61.7-135	WG6860
Chloroform	mg/l	.025	0.0209	83.7	76-121	WG6860
Chloromethane	mg/_	.025	0.0162	65.0	61.5-129	WG6860
cis-1,2-Dichloroethene	mg/l	.025	0.0197	78.9	76-119	WG6860
cis-1,3-Dichloropropene	mg/l	.025	0.0199	79.8	78.2-120	WG6860
Di-isopropyl ether	rg/l	.025	0.0184	73.6	65.6-132	WG6860
Dibromomethane		.025	0.0215	86.0	79.5-118	WG6860
	mg/l	.025	0.0213	66.9		WG6860
Dichlorodifluoromethane	mg/1				54.8-135	
Ethylbenzene	mg/1	.025	0.0221	88.4	78.8-122	WG6860
Hexachloro-1,3-butadiene	mg/1	.025	0.0214	85.6	64.7-129	WG6860
Isopropylbenzene	mg/l	.025	0.0237	94.8	78.6-132	WG6860
Methyl tert-butyl ether	mg/l	.025	0.0188	75.1	71.2-126	WS6860
Methylene Chloride	mg/l	.025	0.0180	72.0	70.3-120	WG6860
r-Bulylbenzene	mg/1	.025	0.3224	89.8	76.2-126	WG6860
n-Propylbenzene	rg/1	.025	0.0225	90.1	78.2-122	WG6860
Naphthalene	mg/1	.025	0.0210	84.0	68.4-128	WG6860
p-Isopropyltoluene	mg/i	.025	0.0235	93.8	74-131	WG6860
sec-Butylbenzene	mg/l	.025	0.0224	89.7	74.4-127	WG6860
		.025	0.0230	92.2	80.4-126	
Styrene	mg/l					WG6860
tert-Butylbenzene	mg/1	.025	0.0225	90.1	75.3-126	W36860
Tetrachloroethene	mg/l	.025	0.0222	88.9	72.6-126	WG6860
Toluene	mg/l	.025	0.0210	83.9	79.7-116	WG6860
trans-1,2-Dichloroethene	mg/l	.025	0.3179	71.B*	72.6-121	WG6860
trans-1,3-Dichloropropene	mg/1	.025	0.0199	79.7	74.3-123	WG6860
Trichloroethene	mg/l	.025	0.0207	82.6	77.7-118	WG6860
Trichlorofluoromethane	mg/_	.025	0.0259	104.	63.5-135	WG6860
Vinyl chloride	mg/l	.025	0.0181	72.2	65.9-128	WG686
Xylenes, Total	mg/l	.075	0.0662	88.2	78.7-121	WG686
4-Bromofluorobenzene	97 =	• • •	0.0002	99.30	71-126	WG686
Dibromofluoromethane				100.0	78.3-121	WG6861
Toluene-d8				101.0	88.5-111	WG686
cis-1,2-Dichloroethene	mg/l	.025	0.3239	95.6	76-119	WG686
Vinyl chloride	mg/l	.025	0.0196	78.5	65.9-128	WG686
4-Bromofluoropenzene	11131	# Middle of	W. S. W. A. KOM.	109.0	71-126	WG686
Dibromofluoromethane				98.90	78.3-121	WG686
Toluene-d8						
TOTROLIG GO				105.0	88.5-111	WG686

TOS (Total Organic Carpon) mg/l 75 71,7 95.6

* Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

AMEC Env. & Infrastructure - Lexington Ms. Sarah Donaldson 2456 Fortune Drive; Ste 100

Lexington, KY 40509

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5853 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

1661920

October 17, 2013

Analyte	Unit	Lapo Kno	ratory Co wn Val	ntrol Sample Result	3 Rec		21	
TOC (Total Organic Carbon)	mg/l	75		73.2			Limie	Bato
					97.7		85-115	WG68
Analyte	Units	Laborator; Result	Control Ref	Sample Duplicate				
1 1 1 2 7			1110 £	1160	Limit	RPD	Limit	Bato
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	mg/l	0.0239	0.0213	95.0	74.2-124	11.2	0.0	2000000
2.2-Tetrachloroethane	mg/l	0.3210	0.0195	84.3	73.2-123	7.35	20	WG68
1,1,2-Trichloroethane	mg/1	0.0221	0.0214	88.0	70.7-122	3.15	20	WG68
.1.2-Trichlorotrifluoroethane	mg/l	0.0222	0.0202	89.0	77.7-118	9.76	20	WG68
,1-Dichloroethane	mg/l	0.0272	0.0253	109.	67.2-143		20	WG68
,1-Dichloroethene	mg/l	0.0209	0.0192	83.0	70.7-126	7.23 8.21	20	WG68
1,1-Dichloropropene	mg/l	0.0234	0.0219	94.0	67.8-129		20	WG68
.2.3-Trichlorobenzene	mg/1	0.0214	0.0201	86.0	73.1-125	6.77	20	WG68
2 2 marshi	mg/l	0.0239	0.0219	96.0	64.9-135	6.44	20	WG68
.2,3-Trichloropropane	mg/1,	0.0234	0.0222	93.0		8.45	20	WG68
.2.3-Trimethylbenkene	mg/l	0.0210	0.0191	84.0	71.8-121	5.02	20	WG68
.2,4-Trichlorobenzene	mg/l	0.0252	0.0231	101.	72.3-116	9.93	20	WG68
.2.4-Trimethylbenzene	mg/1	0.0246	0.0220	98.0	69.7-136	8.86	20	WG68
,2-Dibromo-3-Chioropropane	mg/1	0.3175	0.0183	70.3	75-123	11.3	20	WG68
.2-Dibromoethane	mg/l	0.0239	0.0221	96.0	65.4-128	4.72	20	WG68
,2-Dichlorobenzene	mg/1	0.0243	0.0219		76.6-121	7.91	20	WG68
,2-Dichloroethane	mg/l	0.0220	0.0219	97.0	78.4-117	10.4	20	WG68
,2-Dichloropropane	mg/l	0.0221	0.0203	88.0	68.8-124	5.54	20	WG68
,3,5-Trimethylbenzene	mg/1	0.0253	0.0203	88.0	76.5-119	8.71	2.0	WG68
,3-Dichlorobenzene	rg/1	0.0266		101.	75.6-124	11.8	20	WG68
,3-Dichloropropane	mg/l	0.3234	0.0237	106.	70.8-128	11.6	20	W368
,4-Dichlorobenzene	mg/l	0.0241	0.0214	93.0	77.4-117	8.80	20	WG68
,2-Dickloropropane	mg/1	0.0202	0.0218	96.0	78.8-115	9.83	20	WG684
-Butanone (MEK)	mg/I	0.0873	0.0186	81.0	62.4-133	8.42	20	WG686
-Chloroethyl vinyl ether	mg/l	0.0798	0.0946	70.0	55 - 149	8.06	20	WG686
-Chiorotoluene	mg/1	0.0798	0.0773	64.0	43.8-150	3.27	20	WG686
-Chlorotoluene	mg/i	0.0254	0.0229	100.	74.7-122	9.28	20	WG686
-Methyl-2-pentanone (MIBK)	mg/1		0.0227	102.	77.5-120	11.4	20	WG686
cetone	mg/i	0.0972	0.103	78.0	70.5-133	5.84	20	WG686
rolein	mg/l	0.0781	0.0837	62.0	35.6-163	6.92	23.9	WG686
rylonitrile		0.128	0.135	102.	10-190	5.38	28.1	WG686
nzene	mg/l	0.100	0.103	80.0	55.2-130	3.09	20	WG686
comphenzene	fig/1	0.0213	0.0198	85.0	74.8-121	7.07	20	WG686
omodichloromethane	mg/l	0.0237	0.0215	95.0	77.5-116	9.75	20	WG686
omoform	mg/l	0.0212	0.0198	85.0	75.1-116	7.13	20	WG686
omomethane	mg/1	0.0222	0.0211	89.0	57.5-130	4.71	20	WG686
rbon tetrachloride	mg/l	0.0355	0.0320	142.	49.9-162	10.3	20	WG686
lorobenzene	mg/l	0.0220	0.0205	88.0	70.2-123	7.03	20	WG686
lorodibromomethane	mg/l	0.0247	0.0222	99.0	78.1-119	10.3	20	
loroethane		0.0221	0.0207	88.0	74-121	6.84	20	WG686
laroform		0.0234	0.0222	94.0	61.7-135	5.20	20	WG686
lorpmethane	mg/l	0.0226	0.0209	90.0	26-121	7.85	20	WG686
s-1,2-Dichloroethene	mg/l	0.0172	0.0162	69.0	61.5-129	5.66		WG686
o-1 3-bishi	mg/l	0.0209	0.0197	84.0	76-119	5.72	20	WG6861
s-1,3-Dichloropropene	mg/l	0.0214	0.0199	86.0	/8.2-120	6.98	20	WG686
isopropyl ether	mg/_	0.0197	0.0184	79.0	65.6-132		20	WG6860
promomethane	mg/l		0.0215	90.0	79.5-118	6.65	20	WG6861
chlorodifluoromethane			0.0167	73.0		4.22	20	WG686
ylbenzene			0.0221	99.0	54.8-135	8.95	20	WG6860
achloro-1,3-butadiene			0.0214	97.0	78.8-122	11.6	20	WG6860
propylbenzene			0.0237	108.	64.7-129	12.1	20	WG6860
hyl tert-butyl ether			0.0188	77.0	78.6-132	13.1	20	W36860
hylene Chloride			0.0180	77.0	71.2-126	2.64	20	WG6860
Butylbenzene			0.0224	99.0	70.3-120 76.2-126	6.97	20	WG6860
ropylbenzene	mg/l (ent of the AUG			- Fig. 1 (1) (1) (1) (1)	10.1	20	WG6860

Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

AMEC Env. & Infrastructure - Lexington Ms. Saram Donaldson 2456 Fortune Drive: Ste 100

Lexington, KY 40509

12065 Lebanor Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

1661920

October 17, 2013

Saphthalene	ma.ytc	Units		Control S Ref	ample Duplica %Rec	Li:	ri:	RPD	Limit	Batch
	utwa I sa	essenara		0.0010	88 0	68	4-128	5.19	20	WG686066
	laphthalene							12.0	20	WG686066
									20	WS686066
tyrene ett-butythenzene									20	WG686066
Set_surphensence		mg/1								WS686066
Note										WG686066
		mg/1								WG686066
		mg/1							- TO CO.	WG686066
Table Tabl		mg/1	0.0194							WG68606
Precision of the contents 10.000 10.00000 10.0000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000	resel 3-buch eropropere	mq/l	0.0208							WG68606
	tu -hlavosthana	mg/1	0.0230							WG68606
Injy Chior Be	richlorofinoromothano		0.3273	0.0259						WG68606
Section Sect			0.0190	0.0181						WG68606
102.0			0.0739	0.0662	98.0			11.0	20	WG68606
Depend D		1000000	F117141111121111		102.0					
					99.10					WG68606
District 2-Dichloroethene					102.0	88	3.5-111			WG68606
### ### ##############################	Toluene-d8									
### Proof Pr	1 2 Fishiosoffees	ma/	0.0241	0.0239	96.0					WG68671
Signature Sign					84.0			6.37	20	WG68671
Dibromofluoromethane 103.0 88.5-111 88.50 85.511 88.50 88.5-111 88.50 88.5-111 88.50 88.5-111 88.50 88.5-111 88.50 88.5-111 88.50 88.5-111 88.50 88.5-111 88.50 88.5-111 88.50 88.5-111 88.50 88.5-111 88.50 88.5-112 88.50 88.50 88.5-112 88.50 88.50 88.5-112 88.50 88.	Vinyl chloride				110.0	7	1-126			WG68671
103.0 88.5-111 Note 103.0 88.5-115 No.154 No.154 No.154 No.155 No.15					101.0	7	8.3-121			WG68671
Total Organic Carpon mg/l 71.6						8	8.5-111			WG68671
TOC (Total Organic Carbon) mg/1 T.1.6 T.7. T.7.2 98.0 85-115 C.150 20 Fe	Toluene-d8									
Matrix Spike	TOC (Total Organic Carpon)	mg/1	71.6	71.7	95.0	8	5-115	0.154	20	WG68672
Analyte Units MS Res Ref Res TV & Rec Limit Ref Samp E 1,1,1,2—Tetrachloroethane mg/1 0.0217 0.0 0.25 87.0 64-128 L661798-01 1 1,1,1—Trichloroethane mg/1 0.0207 0.0 0.25 83.0 58.7—134 L661798-01 1 1,1—Trichloroethane mg/1 0.0207 0.0 0.25 84.0 56-132 L661798-01 1 1,1,2—Trichloroethane mg/1 0.0206 0.0 0.25 82.0 66.3—125 L661798-01 1 1,1,2—Trichloroethane mg/1 0.0206 0.0 0.25 82.0 66.3—125 L661798-01 1 1,1,2—Trichloroethane mg/1 0.0206 0.0 0.25 82.0 66.3—125 L661798-01 1 1,1,2—Trichloroethane mg/1 0.0209 0.0 0.0 0.25 82.0 58.5—132 L661798-01 1 1,1,2—Trichloroethane mg/1 0.0209 0.0 0.0 0.25 82.0 58.5—132 L661798-01 1 1,1—Dichloroethane mg/1 0.0237 0.0 0.25 95.0 51.1—140 L661798-01 1 1,1—Dichloroethane mg/1 0.0237 0.0 0.25 95.0 51.1—140 L661798-01 1 1,1—Dichloroethane mg/1 0.0237 0.0 0.25 95.0 51.1—140 L661798-01 1 1,1—Dichloroethane mg/1 0.0218 0.0 0.025 95.0 51.1—140 L661798-01 1 1,2,3—Trichloroethane mg/1 0.0218 0.0 0.025 95.0 51.1—140 L661798-01 1 1,2,3—Trichloroethane mg/1 0.0218 0.0 0.025 93.0 59.1—138 L661798-01 1 1,2,3—Trichloroethane mg/1 0.0220 0.0 0.0 0.025 88.0 61.4—128 L661798-01 1 1,2,3—Trimethylbenzene mg/1 0.0248 0.0 0.025 99.0 63.6—143 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0188 0.0 0.025 99.0 63.6—143 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0248 0.0 0.025 99.0 63.6—143 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0229 0.0 0.025 99.0 63.6—143 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0229 0.0 0.025 99.0 63.6—143 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0229 0.0 0.025 99.0 63.6—143 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0229 0.0 0.025 99.0 63.6—132 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0229 0.0 0.025 99.0 63.6—133 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0229 0.0 0.025 99.0 63.6—133 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0229 0.0 0.025 99.0 63.6—133 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0234 0.0 0.025 99.0 63.6—133 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0229 0.0 0.025 99.0 63.6—133 L661798-01 1 1,2,4—Trimethylbenzene mg/1 0.0234 0.0 0.025 99.0 63.6—134 L661798-01 1 1,2	Too (Total Organic Carbon)	ma/l	73.1	75.2	98.0	8	5-115	0.150	20	WG68705
1,1,2-Tetrachloroethane	165 (10car organic održeni									
1,1,2-Tetrachloroethane		the int	e WC Dae			% Rec	Lim	1-	Ref Samp	Batch
1,1,2-Tetrachloroethane	Analyte	JILL	S 155 NC.	THE THE						
1.1-Trichloroethane	1 1 2-Totrachloroethane	ng/l	0.0217	0.0						WG68606 WG68606
1,2,2-Tetrachloroethane	1,1,1,2-161/achiorost haps	mg/1	0.0207	0.0						
1,1,2-Trichlorosthane	-,1,1-111chiordechom		200 200 200 200 200 200 200 200 200 200	0.0	.025					WG6860
1,1,2 Trich profif Lorgethane	1,1,2,2-1eliaminotoechano			0.0	.025	82.0				WG6860
1,1-Dichloroethane	1,1,2-IIICHIOIGECHANG			0.0	.025	110.				WG6860
1-Dichloroethene					.025	82.0	58.	5-132		W36860
1-Dichloroperente					.025	95.0	51.	1-140	L661798-01	WG6860
1-bichloropropene			하는 기가 가게 되었습니다.			87.0	57.	3-136	L661798-01	WG6860
1,2,3-Trichloropropane	1,1-Dichloropropene					93.0	59.	1-138	1661798-01	WG6860
1,2,3-Trimethylbenzene mg/l 0.0198 0.0 025 79.0 61.3-122 1.661798-01 1.2,4-Trimethylbenzene mg/l 0.0248 0.0 025 99.0 63.6-143 1.661798-01 1.2,4-Trimethylbenzene mg/l 0.0229 0.0 025 92.0 57.4-137 1.661798-01 1.2,4-Trimethylbenzene mg/l 0.0219 0.0 025 70.0 57.3-136 1.661798-01 1.2,2-Dibromo-3-Chloropropane mg/l 0.0219 0.0 025 70.0 57.3-136 1.661798-01 1.2-Dichlorobenzene mg/l 0.0222 0.0 025 89.0 67.1-125 1.661798-01 1.2-Dichlorobenzene mg/l 0.0232 0.0 025 93.0 68.2-123 1.661798-01 1.2-Dichlorobenzene mg/l 0.0216 0.0 025 86.0 50-126 1.661798-01 1.2-Dichloropropane mg/l 0.0212 0.0 0.25 86.0 50-126 1.661798-01 1.3-Dichloropropane mg/l 0.0234 0.0 0.25 86.0 64.2-123 1.661798-01 1.3-Dichlorobenzene mg/l 0.0234 0.0 0.25 99.0 63.1-131 1.661798-01 1.3-Dichlorobenzene mg/l 0.0234 0.0 0.25 99.0 63.1-131 1.661798-01 1.3-Dichloropropane mg/l 0.0215 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichloropropane mg/l 0.0217 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichlorobenzene mg/l 0.0227 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichloropropane mg/l 0.0227 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichloropropane mg/l 0.0227 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichloropropane mg/l 0.0203 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichloropropane mg/l 0							61.	4-128	L661798-01	WG6860
1,2,4-Trimethylbenzene mg/l 0.0248 0.0 025 99.0 63.6-143 1661798-01 1,2,4-Trimethylbenzene mg/l 0.0229 0.0 025 92.0 57.4-137 1661798-01 1,2,4-Trimethylbenzene mg/l 0.0176 0.0 025 92.0 57.4-137 1661798-01 1,2-Dibromo-3-Chloropropane mg/l 0.0222 0.0 025 89.0 67.1-125 1661798-01 1,2-Dibromo-3-Chloropropane mg/l 0.0232 0.0 025 93.0 68.2-123 1661798-01 1,2-Dichlorobenzene mg/l 0.0232 0.0 025 93.0 68.2-123 1661798-01 1,2-Dichloropropane mg/l 0.0216 0.0 025 86.0 60-126 1661798-01 1,2-Dichloropropane mg/l 0.0212 0.0 0.05 86.0 64.2-123 1661798-01 1,3-Dichloropropane mg/l 0.0212 0.0 0.05 86.0 64.2-123 1661798-01 1,3-Dichlorobenzene mg/l 0.0247 0.0 0.05 94.0 63.6-132 1661798-01 1,3-Dichlorobenzene mg/l 0.0247 0.0 0.05 99.0 63.1-131 1661798-01 1,3-Dichloropropane mg/l 0.0247 0.0 0.05 99.0 63.1-131 1661798-01 1,3-Dichloropropane mg/l 0.0227 0.0 0.025 86.0 67.9-121 1661798-01 1,4-Dichlorobenzene mg/l 0.0227 0.0 0.025 86.0 67.9-121 1661798-01 1,4-Dichloropropane mg/l 0.0227 0.0 0.025 86.0 50.5-144 1661798-01 1,4-Dichloropropane mg/l 0.0227 0.0 0.025 86.0 50.5-144 1661798-01 1,4-Dichloropropane mg/l 0.00891 0.0 1.25 61.0 22.4-138 1661798-01 1,4-Dichloropropane mg/l 0.00891	1,2,3-Trichloropropane	1000							1.661798-01	WG6860
1,2,4-Trichlorobenzene mg/1 0.0229 0.0 0.25 92.0 57.4-137 1661798-01 1,2-plibromo-3-Chloropropane mg/1 0.0222 0.0 0.25 89.0 67.1-125 1661798-01 1,2-plibromo-3-Chloropropane mg/1 0.0222 0.0 0.25 89.0 67.1-125 1661798-01 1,2-plibromo-benzene mg/1 0.0232 0.0 0.25 93.0 68.2-123 1661798-01 1,2-plibromo-benzene mg/1 0.0232 0.0 0.25 86.0 60-126 1661798-01 1,2-plibropropane mg/1 0.0216 0.0 0.25 86.0 60-126 1661798-01 1,2-plibropropane mg/1 0.0212 0.0 0.55 85.0 64.2-123 1661798-01 1,3,5-Trimethylbenzene mg/1 0.0234 0.0 0.25 99.0 63.1-131 1661798-01 1,3-plibropropane mg/1 0.0234 0.0 0.25 99.0 63.1-131 1661798-01 1,3-plibropropane mg/1 0.0247 0.0 0.25 99.0 63.1-131 1661798-01 1,3-plibropropane mg/1 0.0247 0.0 0.25 99.0 63.1-131 1661798-01 1,4-plibropropane mg/1 0.0227 0.0 0.25 86.0 67.9-121 1661798-01 1,4-plibropropane mg/1 0.0227 0.0 0.25 86.0 67.9-121 1661798-01 1,4-plibropropane mg/1 0.0237 0.0 0.25 81.0 50.5-144 1661798-01 2,2-plibropropane mg/1 0.0203 0.0 0.25 81.0 50.5-144 1661798-01 2,2-plibropropane mg/1 0.0203 0.0 0.25 81.0 50.5-144 1661798-01 2,2-plibropropane mg/1 0.00089 0.0 1.25 61.0 22.4-138 1661798-01 2-plibropropathyl vinyl other mg/1 0.00089 0.0 1.25 7.10*	1,2,3-Trimethylbenzene									WG6860
1,2-Dibromo-3-Chloropropane mg/1 0.0229 0.0 0.25 70.0 57.3-136 1.661798-01 1.2-Dibromo-3-Chloropropane mg/1 0.0222 0.0 0.25 89.0 67.1-125 1.661798-01 1.2-Dibromo-thane mg/1 0.0232 0.0 0.25 93.0 68.2-123 1.661798-01 1.2-Dichloropropane mg/1 0.0216 0.0 0.25 86.0 60-126 1.661798-01 1.2-Dichloropropane mg/1 0.0212 0.0 0.25 86.0 64.2-123 1.661798-01 1.3-Dichloropropane mg/1 0.0234 0.0 0.25 86.0 64.2-123 1.661798-01 1.3-Dichloropropane mg/1 0.0234 0.0 0.25 94.0 63.6-132 1.661798-01 1.3-Dichloropropane mg/1 0.0234 0.0 0.25 99.0 63.1-131 1.661798-01 1.3-Dichloropropane mg/1 0.027 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichloropropane mg/1 0.027 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichloropropane mg/1 0.0227 0.0 0.25 86.0 67.9-121 1.661798-01 1.3-Dichloropropane mg/1 0.0203 0.0 0.25 86.0 50.5-144 1.661798-01 1.3-Dichloropropane mg/1 0.0203 0.0 0.0 0.25 86.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1,2,4-Trichlorobenzene									WG6860
1,2-Dibromo-3-Chloropropane	1,2,4-Trimethylbenzene		100000000000000000000000000000000000000	5.000 d.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C						WG6860
.2-Dibromoethane mg/l 0.0222 0.0 0.25 93.0 68.2-123 1661798-01 1.2-Dichlorobenzene mg/l 0.0216 0.0 0.25 86.0 60-126 1661798-01 1.2-Dichloroethane mg/l 0.0216 0.0 0.25 86.0 60-126 1661798-01 1.2-Dichloropropane mg/l 0.0212 0.0 0.5 85.0 64.2-123 1661798-01 1.3-Dichloropropane mg/l 0.0234 0.0 0.25 94.0 63.6-132 1661798-01 1.3-Dichlorobenzene mg/l 0.0247 0.0 0.25 99.0 63.1-131 1661798-01 1.3-Dichloropropane mg/l 0.0215 0.0 0.25 86.0 67.9-121 1661798-01 1.3-Dichloropropane mg/l 0.0227 0.0 0.25 86.0 67.9-121 1661798-01 1.4-Dichlorobenzene mg/l 0.0227 0.0 0.25 86.0 67.9-121 1661798-01 1.4-Dichloropropane mg/l 0.0227 0.0 0.25 81.0 50.5-144 1661798-01 1.2-Dichloropropane mg/l 0.0203 0.0 0.25 81.0 50.5-144 1661798-01 1.2-Dichloropropane mg/l 0.00891 0.0 1.25 61.0 22.4-138 1661798-01 1.2-Dichloropropane mg/l 0.00891 0.0 1.25 61.0 22.4-138 1661798-01 1.2-Dichloropropane mg/l 0.00891 0.0 1.25 7.10*	1,2-Dibromo-3-Chibropropane									WG6860
1,2-Dichlorobenzene										WG6860
1,2-Dichloropethane		mg/								WG6860
1,2-Dichleropropane		mg/								WG6860
1,3-5-Trimethylbenzene mg/l 0.024 0.0 .025 99.0 63.1-131 L661798-01 1.3-Dichlorobenzene mg/l 0.0217 0.0 .025 86.0 67.9-121 L661798-01 1.3-Dichloropropane mg/l 0.0227 0.0 .025 86.0 67.9-121 L661798-01 1.4-Dichlorobenzene mg/l 0.0227 0.0 .025 81.0 50.5-144 L661798-01 2.2-Dichloropropane mg/l 0.0203 0.0 .025 81.0 50.5-144 L661798-01 2.3-Dichloropropane mg/l 0.0203 0.0 .025 81.0 50.5-144 L661798-01 2.3-Dichloropropane mg/l 0.00891 0.0 .125 61.0 22.4-138 L661798-01 2.3-Dichloropropane mg/l 0.00891 0.0 .125 7.10*	2-Dichleropropane	mg/								WG6860
1,3-Dichlorobenzene mg/1 0.0247 0.0 .025 99.0 63.1-131 166.1798-01 1,3-Dichloropropane mg/1 0.0215 0.0 .025 86.0 67.9-121 166.1798-01 1,4-Dichlorobenzene mg/1 0.0227 0.0 .025 91.0 68.6-123 166.1798-01 2,2-Dichloropropane mg/1 0.0203 0.0 .025 81.0 50.5-144 1.66.1798-01 2,2-Dichloropropane mg/1 0.0762 0.0 .125 61.0 22.4-138 1.66.1798-01 2,2-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 2,2-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,3-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,3-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,3-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 10-155 1.66.1798-01 3,4-Dichloropethyl vinyl ether mg/1 0.00891 0.0 .125 7.10* 1.00891 0.0 .125 0.00891 0.0 .125 0.00891 0.0 .125 0.00891 0.0 .125 0.00891 0.0 .125 0.00891 0.0 .125 0.00891 0.0 .125 0.00891 0.0 .125 0.00		mg/	1 0.023							
7.3-Dichloropropane mg/l 0.0215 0.0 .025 86.0 67.9-121 1.661798-01 1.4-Dichloropropane mg/l 0.0227 0.0 .025 91.0 68.6-123 1.661798-01 2.2-Dichloropropane mg/l 0.0227 0.0 .025 81.0 50.5-144 1.661798-01 2.3-Dichloropropane mg/l 0.0081 0.0 .025 61.0 22.4-138 1.661798-01 2.3-Dichloropropane mg/l 0.00891 0.0 .125 61.0 22.4-138 1.661798-01 2.5-Dichloropropane mg/l 0.00891 0.0 .125 7.10*				7 0.0	.025					WG6860
1,4-Dichloroberzene				5 0.0	.025					WG6860
7,4-Dichlorogenzene mg/l 0.0203 0.0 .025 81.0 50.5-144 1.661798-01 2.2-Dichlorogropane mg/l 0.0762 0.0 .125 61.0 22.4-138 1.661798-01 2.5-Ditanone (MEK) mg/l 0.00891 0.0 .125 7.10* 10-155 1.661798-01 2.5-Ditanone mg/l 0.00891 0.0 .125 7.10*					.025	91.0				WG6860
2-Sutanone (MEK)					.025	81.0				WG6860
2-sutanone (MEA)					.125	61.0	22	.4-138		WG6860
Z-Chioroethyi vinyi ether							10	-155	L661798-01	WG6860
2-thiorotoluene mg/1 0.0235 0.0 .025 94.0 63.6-128 L661798-01					.025	94.0	63	.6-128	1661798-01	WG6860

2-Sulanone (MEA)
2-Chloroethyl vinyl ether mg/l 0.00891 0.0 .125 7.10* 10-155
2-Chloroethyl vinyl ether mg/l 0.0235 0.0 .025 94.0 63.6-128
2-Chloroethyl vinyl ether mg/l 0.0235 0.0 .025 94.0 63.6-128

* Performance of this Analyte is outside of established criteria.

* For additional information, please see Attachment A "List of Analytes with OC Qualifiers."

AMES Drv. & Infrastructure - Lexington Ms. Sarah Donaldson 2456 Fortune Drive: Ste 100

Lexington, KY 40509

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

Quality Assurance Report Leve. II

1.661920

October 17, 2013

Analyte	***	17723	Matrix Sp					
	Units	MS Res	Ref Res	TV	1 Rec	Limit	Ref Samp	Batch
4-Chlorotoluene	mg/l	0.0239	0.0	0.05		NAME OF THE PERSON OF THE PERS		2000.0
4-Methyl-2-pentanone (MIBK)	mg/1	0.0962	0.0	.025	96.0	65.7-127	L661798-01	WG686
Acetone	mg/1	3.0410	0.00063	.125	77.0	60.8-140	1.661798-01	WG686
Acrolein	mg/l	0.121	0.00063		32.0	10-130	1661798-01	WG686
Acrylonitrile	mg/1	0.0999		.125	97.0	10-200	L661798-01	WG686
Benzene	mg/1	0.0211	0.0	.125	80.0	49.4-133	1861798-01	WG686
Bromobenzene	mg/l		0.0	.025	84.0	54.3-133	1661798-01	WG686
Bromodichloromethane		0.0221	0.0	.025	88.0	63.9-124	L661798-01	WG686
Bromoform	mg/1	0.0208	0.0	.025	83.0	63.9-121	1661798-01	
Bromomethane	mg/l	0.0207	0.0	.025	83.0	59.5-134	1661798-01	WG686
Carbon tetrachioride	mg/l	0.0353	0.0	.025	140.	41.7-155		WG686
hlorobenzene	mg/I	0.0218	0.0	.025	67.0	55.7-134	L661798-01	WG686
hlorodibromomethane	mg/l	0.0230	0.0	.025	92.0	67-125	1661798-01	WG686
hloroethane	mg/l	0.0204	0.0	.025	82.0		1661798-01	WG6860
hloroform	mg/l	0.0245	0.0	.025	98.0	64.3-125	L661798-01	WG6860
hloromethane	mg/_	0.0228	0.000807		88.0	51.5-136	5661798-01	WG6860
Hioromethane	mq/l	0.0179	0.0	.025		53 - 129	1661798-01	WG6860
is-1,2-Dichloroethene	ma/_	0.0208	0.0		72.0	42.4-135	L661798-01	WG6860
is-1,3-Dichloropropene	mg/1	0.0203	0.0	.025	83.0	59.2-129	1661798-01	WG6860
i-isopropyl ether	mg/l	0.0188	0.0	.025	81.0	66.4-125	1661798-01	WG6860
ibromomethane	mg/1	0.0216		.025	75.0	56.9-136	L661798-01	WG6860
ichlorodifluoromethane	ma/_		0.0	.025	86.0	68.2-124	1661798-01	WG6860
tnylbenzene	mg/l	0.0188	0.0	.025	75.0	40.6-144	1661798-01	WG6860
exaculoro-1,3-butadiene	mg/l	0.0234	0.0	.025	34.0	61.4-133	L661798-01	WG6860
SOpropylbenzene		0.0221	0.0	.025	88.0	55.1-136	1661798-01	
ethyl tert-butyl ether	πg/1	0.0248	0.0	.025	99.0	66.8-141	1661798-01	W36860
thylane Chloride	mg/l	0.0193	0.0	.025	77.0	57.7-134	L661798-01	WG6860
-Butylbenzene	mg/1	0.0191	0.0	.025	76.0	58.1-122	1661798-01	WG6860
Propylbenzene	mg/l	0.0239	0.0	.025	96.0	62.7-148	1661798-01	WG6860
phinalene	mg/l	0.0238	0.0	.025	95.0	65.9-131		WG6860
Isopropyltoluene	mg/l	0.0215	0.0	.025	86.0	58-135	L661798-01	WG6860
c-Butylbenzene	mg/l	0.0246	0.0	.025	98.0		1661798-01	WG6860
Vrene	mg/l	0.0233	0.0	.025	93.0	63.2-139	1661798-01	W368606
	mg/l	0.0237	0.0	.025	95.0	62.2-136	L661798-01	WG68606
rt-Butylbenzene	rg/1	0.0234	0.6	.025		66.8-133	1661798-01	WG6860
trachloroethene luene	mq/l	0.0233	0.0	.025	94.0	63.3-134	1661798-01	WG68608
	mg/l	0.0225	0.0		93.0	53-139	L661798-01	WG68606
ars-1,2-Dichloroethene	mg/l	0.0191	0.0	.025	90.0	61,4-130	1661798-01	WG6860
ans-1,3-Dichloropropene	mg/l	0.0197	0.0	.025	76.0	56.5-129	1661798-01	WG58606
ichloroethene	mg/l	0.0218		.025	79.0	64.1-128	L661798-01	WG68606
ichlorofluoromethane	mg/l		0.0	.025	87.0	44.1-149	1661798-01	WG68606
nyl chloride		0.0275	0.0	.025	110.	49.5-145	1661798-01	WG68606
lenes, Total	ng/l	0.0199	0.0	.025	80.0	47.8-137	L661798-01	WG68606
9romofluorobenzene	mg/1	0.0691	0.0	.075	92.0	63.3-131	1661798-01	
promofluoromethane					99.20	/1-126	700-150-0-	WG68606
luene-d8					100.0	78.3-121		W368606
100000000					102.0	88.5-111		WG68606
-1,2-Dichloroethene						00.0		WG68606
yl chloride	mg/l	0.0254	0.0	.025	100.	59.2-129	1000001 12	
Bromofluorobenzene	mg/1	0.0227	0.0	.025	91.0	47.8-137	L662654-13	WG68671
promofluoromethane				44.4	107.0	47.8-137 71-126	1662654-13	WG68671
ueno-d8					106.0			WG68671
Gene-da						78.3-121		WG68671
/m					107.0	88.5-111		WG68671
(Total Organic Carbon)	mg/l	1950	980.	50	06 7	564		
	85	F/5/17/00	2001	30	96.7	80-120	L661920-02	WG686720
(Total Organic Carbon)	rg/1	62.6	12.0					

Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with DC Qualifiers.'

AMEC Env. & Infrastructure - Lexington Ms. Sarah Donaldson 2456 Fortune Drive: Ste 100

Lexington, KY 40509

12065 Lebanon Rd. Mt. Juliet, IN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

1,661920

October 17, 2013

Analyte	22100000	1	Matrix Spi	ke Duplicate	n				
	Unit	s MSD	Ref	:Rec	Limit	RPD	Lin	it Ref Samn	Date
1,1,1,2-Tetrachloroethane	mg/1	0.0240	0.0017	12/12/03				To Not Danie	Batc:
1,1,1-Trichloroethane	mg/1				64-128	10.2	20	L661798-01	WG686
1,1,2,2-Tetrachlorgethane				200	58.7-134	5.36	20	1661798-01	WG686
1,1,2-Trichloroethane	mg/1			(3) (3) A (4)	56-132	22.9	22		
.1.2-Trichlorotrifluoroethane	mg/1				66.3-125	11.4	20	L661798-01	WG686
.1-Dichloroethane	mg/1	0.0283		113.	54.8-154	4.84	22.		WG686
1,1-Dichloroethene	mg/l	0.0215		86.2	58.5-132	5.39			WG686
.1-Dichloropropene	mg/l	0.0251	0.0237	100.	51.1-140	5.70	1,75777	1661798-01	WG686
,2,3-Trichlorobenzene	mg/l	0.0226	0.0218	90.4	57.3-136		20.		WG686
3 3-mailtionanzene	mg/i	0.0249		99.6	59.1-136	3.59	20	1661798-01	WG686
.2.3-Trichloropropane	mg/1	0.0245		98.0		6.78	23.		WG686
,2,3-Trimethylbenzene	mg/1	0.0210	0.0198	84.2	61.4-128	10.8	22.	4 L661798-01	WG686
,2,4-Trichloropenzene	ma/:	0.0260	0.0248		61.3-122	6.36	20	1.661798-01	WG686
,2,4-Trimethylbenzene	mg/1	0.0255		:04.	63.6-143	4.75	21.	9 1661798-01	WG686
,2-Dibramo-3-Chloropropane	mg/i	0.0188	0.0229	102.	57.4-137	10.7	20	L661798-01	WG686
,2-Dibromoethane			0.0176	75.4	57.3-136	6.74	27	1661798-01	WG686
,2-Dichlorobenzene	mg/1	0.0245	0.0222	98.0	67.1-125	9.99	20	1661798-01	
,2-Dichloroethane	mg/l	0.0246	0.0232	98.5	68.2-123	6.00	20	L661798-01	WG686
,2-Dichloropropane	mg/1	0.0228	0.0216	91.1	60-126	5.51	20		WG686
3,5-Trimethylbenzene	mg/_	0.0223	0.0212	89.3	64.2-123	5.23		L661798-01	WG686
3-Dichlorobenzene	mg/l	0.0262	0.0234	105.	63.6-132	11.1	20	1661798-01	WG686
3-Dichloropropane	mg/i	0.0271	0.0247	108.	63.1-131		20.5		WG686
4-Dichlorobenzene	mg/1	0.0240	0.0215	96.0	67.9-121	9.35	20	L661798-01	WG686
2-51-bichloropenzene	mg/1	0.0243	0.0227	97.0		11.2	20	1,661798-01	WG686
2-Dickloropropage	mg/1	0.0211	0.0203	84.2	68.6-123	6.48	20	L661798-01	WG686
Butanone (MEK)	mg/:	0.0766	0.0762		50.5-144	3.75	21.9	1661798-01	WG6861
Chloroethyl vinyl ether	mg/l	0.00206	0.00891	61.3	22.4-138	0.520	27	1661798-01	WG6860
Uniprotoluène	mg/_	0.0263		1.64*	10-155	125.*	20	L661798-01	WG6860
Chlorotoluene	. mg/l		0.0235	105.	63.6-128	11.4	20	1661798-01	
Methyl-2-pentanone (MIBK)		0.0265	0.0239	106.	65.7-127	10.5	20	1661798-01	WG6860
etone	mg/l	0.102	0.0962	81.8	60.8-140	6.03	25.1	L661798-01	WG6860
rolein	mg/1	0.0444	0.0410	35.0	10-130	7.75	27.9		WG6860
rylonitrile	mg/l	0.127	0.121	102.	10-200	4.97	27.7	1661798-01	WG6860
nzene	mg/l	0.109	0.0999	86.9	49.4-133	8.38		L661798-01	WJ6860
οπobenzene	mg/i	0.0222	0.0211	88.9	54.3-133		25.3	L661798-01	WG6860
omodichloromethane	mg/1	0.0250	0.0221	99.8	63.9-124	5.17	20	D661798-01	WG6860
omoform	mg/l	0.0215	0.0208	85.9		12.3	28	1661798-01	W36860
	mg/I	0.0236	0.0207	94.2	63.9-121	3.05	2.0	L661798-01	WG6860
omomethane	mg/l	0.0368	0.0353	147.	59.5-134	13.0	20.5	1661/98-01	WG6860
rbon tetrachloride	mg/l	0.0232	0.0218		41.7-155	3.92	21.9	1661798-01	WG6860
lorobenzene	mg/I	0.0254		92.7	55.7-134	6.08	20	1661798-01	WG6860
lorodibromomethane	mg/l	0.0237	0.0230	102.	67-125	9.77	20	1661798-01	WG6860
loroethane			0.0204	34.7	64.3-125	14.7	20.8	1661798-01	WG6860
Graform	mg/l	0.0240	0.0245	96.2	51.5-136	1.76	4.0	L661798-01	
oromethane	mg/=	0.0242	0.0228	93.6	63-129	5.81	20	1661798-01	WG6860
-1,2-Dichloroethene	mg/l	0.0189	0.0179	75.5	42.4-135	5.36	20		WG6860
-1,3-Dichloropropene	mg/l	0.0220	0.0208	88.0	59.2-129	5.76	20	1661796-01	W36860
isopropyl ether	mg/1	0.0210	0.0203	84.2	66.4-125	3.83	20	1661798-01	WG6860
romomethane	mg/l	0.0201	0.0188	80.5	56.9-136	6.56		1661798-01	WG68606
Figradifica-	mg/l	0.0230	0.0216	91.9	68.2-124		20	1661798-01	WG68606
hlorodifluoromethane	mg/I	0.0199	0.0188	79.7		6.29	20	L661798-01	WG68606
ylbenzene	ma/_	0.0255	0.0234	102.	40.6-144	6.04	20.2	1661798-01	WG68606
achloro-1,3-butadiene	mg/1	0.0239	0.0221		61.4-133	8.37	20	1661798-01	WG68606
propylberzene	mg/l	0.0277		95.4	55.1-136	7.53	23.6	L661798-01	WG68606
hyl tert-butyl ether	mg/l		0.0248	111.	66.8-141	22.3	20	1661798-01	WG68606
hylene Chloride		0.0202	0.0193	80.9	57.7-134	4.83	20	1661798-01	
itylbenzene	mg/l	0.0199	0.0191	79.8	58.1-122	4.20	20	L661798-01	WG68606
opylbenzene	mg/l	0.0252	0.0239	101.	62.7-140	5.34		1661798-01	WG68606
nthalene	mg/l		0.0238	106.	65.9-133	10.6	20.3		WG68606
sopropyltoluere			0.0215	93.1	58-135			1661798-01	W368606
Butylbenzene			0.0246	110.	63.2-139	8.11		L661798-01	WG68606
-u-y-renzere				105.		11.0		1661798-01	WG68606
rene				106.	62.2-136	6		1661798-01	WG68606
-Butylbenzene				103.	66.8-133	11.3		L661798-01	WG68606
rachioroethere					63.3-134	9.69	21	1661798-01	WG68606
* Performance of this Analyte For additional information	the second second second	프라이트 기계 모두 없이다.		105.	53-139	12.2	20	1661798-01	WG68606
For additional information,	while the U		METAL CONTRACTOR	COLUMN TO THE PARTY OF THE PART					

AMEC Env. 5 Infrastructure - Lexington Ms. Saran Domaidson 2456 Fortune Drive: Ste 100

Lexington, KY 40509

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

1661920

October 17, 2013

		Mat		Duplicate	(2.47) (0)	RPD	Timir	Ref Samp	Baton
	Units	MSD	Ref	1.Rec	Limit	KFD	Appellia v	NOT DUMP	
Realyte Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene trichlorofluoromethane Vinyl chloride Xylenes, Total 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	mg/l mg/l mg/l mg/l mg/l mg/l ng/l	0.0234 0.0197 0.0211 0.0230 0.0285 0.0211 0.0766	0.0225 0.0191 0.0197 0.0218 0.0275 0.0199 0.0691	93.7 78.6 84.5 91.8 114. 84.2 102. 106.0 100.0 101.0	61.4-130 56.5-129 64.1-128 44.1-149 49.6-145 47.8-137 63.3-131 71-126 78.3-121 88.5-111	4.25 2.83 7.20 5.15 3.40 5.65 10.2	20 20 20 20 21.2 20 20	L661798-01 L661798-01 L661798-01 L661798-01 L661798-01 L661798-01 L661798-01	WG68606 WG68606 WG68606 WG68606 WG68606 WG68606 WG68606 WG68606 WG68606
cis-1,2-Dichloroethene Vinyl chloride 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	mg/1 mg/1	0.0244	0.0254 0.0227	97.4 91.6 109.0 106.0 98.60	59.2-129 47.8-137 71-126 78.3-121 88.5-111	4.21	20 20	1662654-13 1662654-13	WG6867 WG6867 WG6867 WG6867
TOC (Total Organic Carpon)	mg/l	1960	1950	98.0	80-120	0.676	20	1661920-02	WG6867
TOC (Total Organic Carpon)	mg/1	61.8	62.6	99.5	80-120	1.30	20	1662577-01	WG6870

Batch number /Run number / Sample number cross reference

WG686066: R2839127: L661920-01 02 03 04 05 06 07 08 09 WG686717: R283948: L661920-04 08 WG686720: R2840262: L661920-01 02 03 04 05 07 WG687052: R2841214: L661920-06 08

Calculations are performed prior to rounding of reported values.
 Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualiflers.'

AMEC Env. & Infrastructure - Lexington Ms. Saran Donaldson 2456 Fortune Drive; Ste 100

Lexington, KY 40509

Cuality Assurance Report Leve. IT

1661920

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a larget parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method plank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate — is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (RPPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier.

12065 Lebanon Rd. Mt. Juliet, TN 57122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax 1.D. 62-0814289

Est. 1970

October 17, 2013

			Billing Inform	mation					An.	alysis / Cor	tainer / I	Preservative			Chain of Custo	ty Page _ of _	
AMEC Env. & Infrastr exington		Ms. Mary Beth Fields 11003 Bluegrass Pkwy., Ste. 690 Louisville, KY 40299						Hel		6-1797				Your	ESC		
xington. KY 40509 port to s, Sarah Donaldson			Email To: sa	rah.donaldso	n@amec.com			-8						12065 Lebanon Rd. Mount Juliet, TN 17122 Phone 615-758-5858 Phone 800-767-5859			
Project Description RBTC - Leitchfield, KY				City/State Collected.		A.		7						La (661920			
Phone 859-255-3308 Chent Project # 6251-12-1002			MACTECLI		HG		-40h						G183				
Collected by (print)	Site/Facility ID			C0125020	33 e Results Needed		b-Septa	nb-HCl	1	TO RESIDEN					Acctnum: MACTECLEX Template: T89498		
Collected by (signature)	Same 0 Nest 0 Two Da	21	200% 100% 50%	Email?	No X_Yes	No	TOC 250mlAmb-Septa-HCI	V8260 40mfAmb-HCl	c Blank	1000					Prelogin: P444667 TSR: 044 - Leslie Newton () PB:/().///////////////////////////////////		
Packed on ice NSample ID	Three t	Matrix *	25% Depth	Date	Time	o' Crtrs	OC 2	/826(100						Shipped Via	FedEX Ground	
		GW	NA	10-7-1	3 1635	3	X	X			28	2660			*	-0	
M13-5	Grab	GW	1	101	1505	3	X	X			12.7		100		+	- 07	
MW-6		GW	++	+ +	1615	3	X	X		18	58	668	199		+	- 03	
Min-13		GW	11	++	1300	3	X	X	L. State		No.				*	-d	
15-cm		GW	++	+	1235	3	X	X	355		35	1000			*	- d	
NW 27		GW			1410		X	×		19		555	100		*	*4	
MW-23		GW	++-	+++	1750	3	X	X	16-66		215	0.85	100		+	r é	
MW-17	++	GW	++	+++	1100	3	X	X	1859			0.000				29	
515-4		GW	士	1	1100	3	×	×				10.50		2		-01	
TripBlank		GW		-		3	×	×	1			1988		70		5)483F-11	
* Matrix SS - Soil GW Groundwa	iter WW - WasteV	Vater DW - I	Prinking Wat	er OT Other		1			. A	1		- hardend		-		- Konstantino (n.)	
Remarks: Possible	3 DINE	See	Lestin	for .	Special 14 34 6061 55	mel H3	1.00			PH		Temp		Hold #	100		
Relinquished by (Signature)	>	Date 10	7-2013	7 Time: Received 1			16			Samples returned via UPS				Condition: (lab use only)			
Relinquished by (Signature)	7	Date		Time	Received by (Sign	nature)	7	Temp: °C Bottles Ri 3.6% 2				Bottles Rece 25	100000	COC Sea)	Intact:	Y N NA	
Relinquished by (Signature)	S	Date	ate Time		Received for lab by: (5ig				o Wh.			10-8-13 0900				NCF:	

APPENDIX B

Photo Log

PHOTO 1:

Marking locations in Zone 7 Pit BOS 100 injections.

PHOTO 2:

Marking locations in Zone 6 BOS 100 injections.

РНОТО 3:

Marking locations in Zone 2 BOS 100 injections.

РНОТО 4:

Concrete coring for Zone 1B BOS 100 injection locations.

PHOTO 5:

Cored locations for Zone 1B BOS 100 injections.

РНОТО 6:

Cored locations for Zone 6 BOS 100 injections.

PHOTO 7:

Cored locations for Zone 2 BOS 100 injections.

PHOTO 8:

Installation of well TW-

РНОТО 9:

Soil and shale from boring TW-16.

PHOTO 10:

Close up of soil (bottom) and shale (top) from boring.

PHOTO 11:

View of location of wells TW-16 and TW-17, near MW-8 and MW-8M.

PHOTO 12:

Markings near MW-5 and MW-5M by The Underground Detective, showing sanitary pipeline.

PHOTO 13:

Markings inside west gate by The Underground Detective, showing gas lines.

PHOTO 14:

Same

PHOTO 15:

Markings in Zone 1B by the Underground Detective, showing storm sewer line.

PHOTO 16:

3DMe injection in progress at F12P. Batch mixing trailer in background.

PHOTO 17:

3DMe solution temporarily overflowing injection point. Absorbent sock placed to collect loose solution.

PHOTO 18:

Daylighting of 3DMe in parking area through cracks in pavement.

PHOTO 19:

3DMe injection in progress. 3DMe visible in injection hole.

PHOTO 20:

3DMe injection near MW-3.

			a	

PHOTO 21:

Same. Daylighting between grassy area and concrete pad.

PHOTO 22:

3DMe injection near MW-5 and MW-5M.

PHOTO 23:

Same. Daylighting seen between concrete ramp and loading dock.

PHOTO 24:

Newly installed permanent injection points F35P and F36P near west gate.

PHOTO 25:

AST representatives hydrating BOS 100 drums to displace nitrogen and never contact with air.

PHOTO 26:

Preparing to inject BOS 100 using Geoprobe 7822DT rig in Zone 7.

	2		

PHOTO 25:

AST representatives hydrating BOS 100 drums to displace nitrogen and never contact with air.

PHOTO 26:

Preparing to inject BOS 100 using Geoprobe 7822DT rig in Zone 7.

PHOTO 27:

AST representative mixing batch of BOS 100. Water tank in foreground.

PHOTO 28:

Setting up to inject BOS 100 in Zone 7 (Pit G).

PHOTO 29:

Geoprobe using direct push to reach depth necessary for injecting BOS 100 below backfilled WWTR pit.

PHOTO 30:

Injecting BOS 100 in Zone 7 (Pit E).

PHOTO 31:

Concrete coring for installation of borings TW-18A and TW-18B.

PHOTO 32:

Geoprobe set up to begin drilling for well TW-19.

PHOTO 33:

Installation of TW-19 after placement of PVC, filter sand, and bentonite.

PHOTO 34:

Geoprobe set up for installation of well TW-18.

RBTC – Leitchfield, KY AMEC Project No. 6251-12-1002

PHOTO 35:

AST representatives using auger attachment to deepen BOS 100 injection points in Zone 1B.

APPENDIX C

Soil Boring and Well Logs

DEP	DESCRIPTION	L	E	SAMPLE	R E C		PLES	REMARKS
P H (ft)	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW.	THOM ZD	L E V (ft)	(ft) SAMPLE TYPE	0 V	SAMPLE S	(ppm)	Note: No information on the borings should be used without considering the entire content of the main document
0 1	GRAVEL (GP) with clay, brown, medium grained, very moist, no odor SAND (SP), brown, line grained, wet, no odor	500		-		TYPE		
				0-4	3.6 of 48	0-4	0.7	
5 -				4-8	8.3 of 48	4-5	0.4	
(a) (b)	CLAY (CL), brown, wet, no odor CLAY (CL) with silt, brown, wet, no odor							
10 -	CLAY (CL), brown, soft, wet, no odor SILTY CLAY (CL-ML), brown, wet, no odor, medium angula stone			8-12	20.3 of 48	8-12	0.6	
	NO RECOVERY REFUSAL AT 12.8 FEET	23,233		12-12.8	0 of 9.6	12-12.8	0.6	
- 15								
	RT DATE: 1/7/2014 Pre TRACTOR: AST Logged	pared By. By: Jacob	CSRP Morris		S	OIL B	ORING	RECORD
DRILL EQUI METH HOLE GEOF	LER: Ben Borth/Brandon IPMENT: 54LT HOD: Geoprobe Direct Push E DIA.: 2" PROBE PUSH LENGTH:			Project Project Checke	No:	6251-12	2-1002	H TOOL CORPORATION
REMA	ARKS:						ame	c [©]

PHOTO 21:

Same. Daylighting between grassy area and concrete pad.

PHOTO 22:

3DMe injection near MW-5 and MW-5M.

PHOTO 23:

Same. Daylighting seen between concrete ramp and loading dock.

PHOTO 24:

Newly installed permanent injection points F35P and F36P near west gate.

PHOTO 25:

AST representatives hydrating BOS 100 drums to displace nitrogen and never contact with air.

PHOTO 26:

Preparing to inject BOS 100 using Geoprobe 7822DT rig in Zone 7.

PHOTO 27:

AST representative mixing batch of BOS 100. Water tank in foreground.

PHOTO 28:

Setting up to inject BOS 100 in Zone 7 (Pit G).

PHOTO 29:

Geoprobe using direct push to reach depth necessary for injecting BOS 100 below backfilled WWTR pit.

PHOTO 30:

Injecting BOS 100 in Zone 7 (Pit E).

PHOTO 31:

Concrete coring for installation of borings TW-18A and TW-18B.

PHOTO 32:

Geoprobe set up to begin drilling for well TW-19.

PHOTO 33:

Installation of TW-19 after placement of PVC, filter sand, and bentonite.

PHOTO 34:

Geoprobe set up for installation of well TW-18.

PHOTO 35:

AST representatives using auger attachment to deepen BOS 100 injection points in Zone 1B. APPENDIX C

Soil Boring and Well Logs

